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EXECUTING SUBROUTINES IN A
MULTI-THREADED PROCESSING SYSTEM

TECHNICAL FIELD

The disclosure relates to multi-threaded processing and,
more particularly, to techniques for executing subroutines in
a multi-threaded processing system.

BACKGROUND

A single instruction, multiple data (SIMD) processing sys-
tem is a type of parallel computing system that includes
multiple processing elements which execute the same
instruction on multiple pieces of data. A SIMD system may be
a standalone computer or a sub-system of a computing sys-
tem. For example, one or more SIMD execution units may be
used in a graphics processing unit (GPU) to implement a
programmable shading unit that supports programmable
shading.

A SIMD processing system allows multiple threads of
execution for a program to execute synchronously on the
multiple processing elements in a parallel manner, thereby
increasing the throughput for programs where the same set of
operations needs to be performed on multiple pieces of data.
Because each thread operates on different data, if a program
includes conditional branch instructions, it is possible that the
branch condition may be satisfied for some of the threads
executing in the system and not satisfied for other threads
executing in the system. Such a condition may be referred to
as a divergent branch condition and results in the SIMD
system not being able to execute all of the threads in a syn-
chronous fashion on the multiple processing elements.

SUMMARY

This disclosure is directed to techniques for executing sub-
routines in a single instruction, multiple data (SIMD) pro-
cessing system that is subject to divergent thread conditions.
In particular, a resume counter-based approach for managing
divergent threads is described that utilizes program module-
specific minimum resume counters (MINRCs) for the effi-
cient processing of control flow instructions. As used herein,
aprogram module may refer to a main program module (e.g.,
a top-level program module) or a subroutine program mod-
ule. As such, each subroutine that is executed in the process-
ing system may use a subroutine-specific MINRC to control
the processing of control flow instructions included in the
subroutine. The use of program module-specific MINRCs
allows a system that implements MINRC-based control flow
to support the execution of subroutine program instructions.

In one example, this disclosure describes a method that
includes controlling, with one or more processors, execution
of a program based on a first MINRC. The first MINRC
specifies a value that is indicative of a smallest resume
counter value of a plurality of resume counter values associ-
ated with a plurality of threads of execution for the program.
The method further includes controlling, with the one or more
processors, execution of a subroutine of the program based on
a second MINRC associated with the subroutine. The second
MINRC specifies a value indicative of a smallest resume
counter value from a subset of the plurality of resume counter
values that corresponds to all of the threads that are active
when execution of the subroutine is initiated.

In another example, this disclosure describes a system that
includes one or more processors configured to control execu-
tion of a program based on a first MINRC and control execu-
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tion of a subroutine of the program based on a second MINRC
associated with the subroutine. The first MINRC specifies a
value that is indicative of a smallest resume counter value of
a plurality of resume counter values associated with a plural-
ity of threads of execution for the program. The second
MINRC specifies a value indicative of a smallest resume
counter value from a subset of the plurality of resume counter
values that corresponds to all of the threads that are active
when execution of the subroutine is initiated.

In another example, this disclosure describes an apparatus
that includes means for controlling execution of a program
based on a first MINRC. The first MINRC specifies a value
that is indicative of a smallest resume counter value of a
plurality of resume counter values associated with a plurality
of'threads of execution for the program. The apparatus further
includes means for controlling execution of a subroutine of
the program based on a second MINRC associated with the
subroutine. The second MINRC specifies a value indicative
of a smallest resume counter value from a subset of the
plurality of resume counter values that corresponds to all of
the threads that are active when execution of the subroutine is
initiated.

In another example, this disclosure describes a computer-
readable storage medium storing instructions that, when
executed, cause one or more processors to control execution
of a program based on a first MINRC. The first MINRC
specifies a value that is indicative of a smallest resume
counter value of a plurality of resume counter values associ-
ated with a plurality of threads of execution for the program.
The instructions further cause the one or more processors to
control execution of a subroutine of the program based on a
second MINRC associated with the subroutine. The second
MINRC specifies a value indicative of a smallest resume
counter value from a subset of the plurality of resume counter
values that corresponds to all of the threads that are active
when execution of the subroutine is initiated.

The details of one or more examples of the disclosure are
set forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the disclo-
sure will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example process-
ing system that may be used to implement the subroutine
execution techniques of this disclosure.

FIG. 2 is a block diagram illustrating the control unit in the
example processing system of FIG. 1 in greater detail accord-
ing to this disclosure.

FIG. 3 is a block diagram illustrating an example control
flow module that may be used to implement the subroutine
execution techniques of this disclosure.

FIG. 4 is a conceptual diagram illustrating an example
control flow for the subroutine execution techniques of this
disclosure.

FIG. 5is aconceptual diagram illustrating another example
control flow for the subroutine execution techniques of this
disclosure.

FIG. 6 is a conceptual diagram illustrating example pro-
gram space arrangements in accordance with the techniques
of this disclosure.

FIGS. 7-18 are flow diagrams illustrating example instruc-
tion processing techniques that utilize the subroutine execu-
tion techniques of this disclosure.
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FIG. 19 is a block diagram illustrating another example
control flow module that may be used to implement the sub-
routine execution techniques of this disclosure.

FIG. 20 is a state transition diagram that characterizes
exemplary operation of the control flow module illustrated in
FIG. 19 according to this disclosure.

FIG. 21 is a state transition table that characterizes exem-
plary operation of the control flow module illustrated in FIG.
19 according to this disclosure.

FIGS. 22-28 illustrate example pseudo-code for imple-
menting the subroutine execution techniques of this disclo-
sure.

FIG. 29 is a flow diagram illustrating an example technique
for controlling a processing system based on program mod-
ule-specific MINRC:s in accordance with this disclosure.

FIG. 30 is a flow diagram illustrating an example technique
for executing a subroutine call instruction in accordance with
this disclosure.

FIG. 31 is a flow diagram illustrating an example technique
for executing a subroutine return instruction in accordance
with this disclosure.

DETAILED DESCRIPTION

This disclosure is directed to techniques for executing sub-
routines in a single instruction, multiple data (SIMD) pro-
cessing system that is subject to divergent thread conditions.
In particular, a resume counter-based approach for managing
divergent threads is described that utilizes program module-
specific minimum resume counters (MINRCs) for the effi-
cient processing of control flow instructions. As used herein,
aprogram module may refer to a main program module (e.g.,
a top-level program module) or a subroutine program mod-
ule. As such, each subroutine that is executed in the process-
ing system may use a subroutine-specific MINRC to control
the processing of control flow instructions included in the
subroutine. The use of program module-specific MINRCs
allows a system that implements MINRC-based control flow
to support the execution of subroutine program instructions.

In some examples, the techniques of this disclosure may
include using a main program MINRC to control the execu-
tion of a main program and subroutine-specific MINRCs to
control the execution of subroutines that are called by the
main program or by other subroutines. The main program
MINRC value may be indicative of a smallest resume counter
value from a set of one or more resume counter values that
corresponds to all threads that are active when execution of
the main program is initiated, which is typically all of the
threads executing in the system. Similarly, each subroutine-
specific MINRC may specify a value that is indicative of a
smallest resume counter value from a set of one or more
resume counter values that corresponds to all threads that are
active when execution of the respective subroutine is initi-
ated. Each resume counter value may correspond to a respec-
tive one of a plurality of threads executing on the processing
system, and if the respective thread is inactive, the resume
counter value may be indicative of a program counter value at
which the inactive thread is scheduled to be reactivated.

The MINRC that is currently controlling execution of the
processing system may be used to control which instruction is
executed after a forward jump instruction or after a forward
branch instruction when one or more threads are deactivated.
For example, in certain cases, after executing a forward jump
instruction or a forward branch instruction, the processing
system may select an instruction indicated by the MINRC as
the next instruction to be executed. By using separate MIN-
RCs for the main program and for each of the subroutines, the
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4

processing system may ensure that subroutines do not branch
from a subroutine into the main program or into another
subroutine outside of the execution of a call or return instruc-
tion. In this way, the techniques of this disclosure may ensure
proper control flow for the execution of subroutines in a
processing system that uses MINRCs to control the execution
of'forward jump instructions and forward branch instructions.

According to some aspects of this disclosure, techniques
are described for switching a MINRC that is used to control
execution of a processing system upon entry and exit of a
subroutine. For example, in response to executing a call
instruction, the processing system may be configured to save
a state of a MINRC corresponding to the caller program, to
initialize a new MINRC corresponding to the subroutine pro-
gram, and to control execution of the subroutine based on the
MINRC that corresponds to the subroutine program. In
response to executing a return instruction, the processing
system may be configured to restore the saved state of the
MINRC that corresponds to the caller program, and to resume
controlling execution of the caller program based on the
restored state of MINRC.

According to some aspects of this disclosure, techniques
are described for updating a MINRC value in response to
activating and/or deactivating one or more threads in the
processing system. In general, to update the MINRC value,
the processing system may determine a candidate set of
resume counter values for use in determining the MINRC
value, and set the MINRC to a value that is indicative of a
smallest resume counter value from the candidate set of
resume counter values. The candidate set of resume counter
values may be a subset of the entire set of resume counter
values that corresponds to all threads executing in the pro-
cessing system. The candidate set of resume counter values
may, in some cases, exclude one or more resume counter
values that correspond to threads that were not active when
execution of the currently executing program module was
initiated. By excluding such resume counter values from con-
sideration while updating the MINRC, the techniques of this
disclosure may ensure that a subroutine-specific MINRC is
updated to values that are within the program space associ-
ated with the subroutine.

If an instruction set architecture (ISA) of a SIMD process-
ing system supports control flow instructions, all threads may
be controlled by a single control flow unit that includes a
single program counter. Because each thread operates on
different data, it is possible that the branch condition for a
particular branch instruction may be satisfied for some of the
threads executing in the system and not satisfied for other
threads executing in the system. If the condition specified by
a particular conditional branch instruction is either satisfied
or not satisfied for all of the active threads executing in the
system, then the branching divergence for the branch instruc-
tion is said to be uniform. Otherwise, if the condition is
satisfied for some of the active threads and not satisfied for
others of'the active threads, then the branching divergence for
the branch instruction is said to be divergent. If a divergent
branch happens, the next instruction that is scheduled to be
executed for some of the active threads may be different than
the next instruction that is scheduled to be executed for others
of'the active threads. This may result in the SIMD processing
system not being able to execute all of the threads in a lock-
step fashion.

To deal with a divergent branch instruction, the techniques
of this disclosure may, in some examples, deactivate one
subset of the threads that either satisfied or did not satisfy the
branch condition such that the remaining active threads are all
synchronized to execute the same next instruction. To control
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the reactivation of the deactivated threads, the techniques of
this disclosure may use a resume counter-based approach that
involves allocating a resume counter for each thread execut-
ing in the processing system, setting the resume counter for
each thread being deactivated to a value that is indicative of a
program counter value at which the respective thread should
be reactivated, and performing a resume check operation
prior to the execution of every instruction.

For example, the resume counter-based approach may
deactivate one or more threads in response to a divergent
branch condition and, for each thread being deactivated, set a
resume counter (e.g., a register) for the respective thread to a
value indicative of a program counter value that corresponds
to a next instruction to be executed by the deactivated thread.
If a thread is active, the resume counter for the thread may be
set to a default value. In some examples, the default value may
be an “infinite value” that corresponds to a value greater than
the address range of the program (e.g., a maximum register
value). Each time the program counter register is loaded with
a new program counter value, a resume check operation may
be performed, which may reactivate any threads where the
resume counter value for the thread is equal to the new pro-
gram counter value.

To ensure that proper control flow is maintained in a pro-
cessing system that uses the above-described resume counter-
based approach for thread reactivation, the processing system
may use a “least-valued address first” thread processing
order. In general, the “least-valued address first” thread pro-
cessing order may refer to a processing order where threads
that are scheduled to process instructions at lower-valued
addresses are executed prior to threads that are scheduled to
process instructions at higher-valued addresses. Such a pro-
cessing order may prevent the control flow from jumping over
any resume points for inactive threads without first reactivat-
ing such threads. In other words, such a processing order may
ensure that all threads will be active and will have completed
processing by the time the last program statement has finished
execution.

The “least-valued address first” thread processing order
may differentiate which threads are deactivated in response to
a divergent branch instruction based on the direction (i.e.,
forward or backward) of the branch instruction. For a diver-
gent backward branch instruction, the techniques of this dis-
closure may deactivate threads for which the branching con-
dition is not satisfied, set the resume counter value for each
thread being deactivated to a value associated with a next
sequential instruction that occurs after the branch instruction,
load the program counter with a value associated with a target
instruction specified by the branch instruction, and proceed to
execute those threads for which the branching condition is
satisfied. For a divergent forward branch instruction, the tech-
niques of this disclosure may deactivate threads for which the
branching condition is satisfied, set the resume counter value
for each thread being deactivated to a value associated with a
target instruction specified by the branch instruction, load the
program counter with a value associated with a next sequen-
tial instruction that occurs after the branch instruction, and
proceed to execute those threads for which the branching
condition is not satisfied. Deactivating threads in this manner
ensures that divergent threads that are scheduled to process
instructions at lower-valued addresses execute prior to
threads that are scheduled to process instructions at higher-
valued addresses (i.e., a “least-valued address first” thread
processing order).

In cases where one or more threads have already been
deactivated and the remaining active threads execute either a
forward jump instruction or a uniformly satisfied forward
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branch instruction (i.e., a forward branch instruction where
the branching condition is uniformly satisfied for all active
threads), one approach to handling the control flow may be to
always jump to the target instruction specified in the forward
jump or forward branch instruction because all active threads
will remain active. Such an approach, however, does not
guarantee a “least-valued address first” thread processing
order. In particular, one or more inactive threads may, in some
cases, have resume counter values that are between the cur-
rent program counter value of the jump or branch instruction
and the target program counter value (i.e., the program
counter value associated with the target instruction specified
in the branch or jump instruction). If the control flow were to
jump over such inactive threads, it is possible that such
threads would not be reactivated prior to finishing execution
of the program.

To avoid such a situation, a global MINRC may be used
that stores a value indicative of a smallest resume counter
value from a set of resume counter values that correspond to
all threads in the system. When any of the resume counters is
set to a new value (e.g., upon deactivation of a thread), the
MINRC may be updated to reflect the new smallest resume
counter value. A processing system may use the MINRC to
determine whether there are any resume points between a
currently executed forward jump or forward branch instruc-
tion and the target instruction specified in the instruction,
which in turn may be used to determine whether the process-
ing system can jump directly to the target instruction without
causing the system to skip over one or more resume points for
inactive threads.

For example, when executing a forward jump instruction or
a forward branch instruction that is uniformly satisfied, the
processing system may compare the target program counter
value specified by the jump or branch instruction to a MINRC
value and select either the target program counter value or the
MINRC value to load into the program counter based on the
comparison. When the target program counter value is less
than or equal to the MINRC value, the processing system may
select the target program counter value as the value to load
into the program counter. When the target program counter
value is not less than or equal to the MINRC value, the
processing system may select the MINRC as the value to load
into the program counter. Because the MINRC value is
indicative of the smallest resume counter value of all inactive
threads, executing forward jumps and uniform forward
branches in the above-described manner will ensure that the
control flow does not skip over the resume points for any
inactive threads. In this way, a MINRC may be used to ensure
proper control flow when executing forward jump and for-
ward branch instructions in a processing system that uses
resume counters to control the reactivation of deactivated
threads.

The MINRC-based approach for ensuring proper control
flow of forward jump and forward branch instructions may
also be more efficient than other techniques that may be used
for the same purpose. For example, another technique for
ensuring proper control flow may involve, whenever a for-
ward jump instruction or a uniformly satisfied forward branch
instruction is executed, deactivating all threads and incre-
menting the program counter sequentially through each pro-
gram counter value between the current program counter
value and the target program counter value so that any inac-
tive threads that have resume counters values between the
current program counter value and the target program counter
value are properly reactivated and executed prior to executing
the target instruction. Although such an approach may guar-
antee a “least-valued address first” thread processing order,
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such an approach may be less efficient than the MINRC-
based approach. For example, in some cases, the resume
counter values for all of the inactive threads may be greater
than or equal to the target program counter value associated
with the forward jump or branch instruction at issue. Sequen-
tially traversing through each of the program counter values
between the current instruction and the target instruction in
such a situation may be inefficient due to wasted, dormant
instruction cycles where no execution of any thread takes
place.

Rather than sequentially traversing through each of the
program counter values between the current instruction and
the target instruction, the MINRC-based approach may
directly load either the target program counter value or the
MINRC value into the program counter in response to pro-
cessing a forward jump instruction or a uniformly satisfied
forward branch instruction. This allows the next instruction to
be processed during the next instruction cycle without need-
ing to have extra, dormant instruction cycles between execu-
tion of the current instruction and the next instruction. By
allowing the next instruction to be processed during the next
instruction cycle, the MINRC-based approach for control
flow may improve the performance of forward jump and
forward branch instructions relative to resume counter-based
systems that do not use MINRCs.

One drawback of using a single, global MINRC value,
however, is that such a value may not be adequate, in and of
itself, to ensure proper control flow for programs that include
subroutines. If a program includes a subroutine, it is possible
that the global MINRC value may point to a program counter
value that is located outside of the program space of the
subroutine which is currently being executed. For example,
one or more threads may have been deactivated in a main
program module and the MINRC may have been set to a
program counter value in the main program space that corre-
sponds to the next instruction to be executed by such threads.
Prior to executing the instruction at the program counter value
in the main program space where the deactivated threads are
scheduled to be reactivated, the remaining active threads may
begin executing a subroutine. If a forward jump or forward
branch instruction is executed during the subroutine, it is
possible that the MINRC value may still point to the program
counter value in the main program space, which is outside of
the program space of the subroutine. This may cause the
control flow to jump out of the subroutine and back into the
main program outside of a return instruction.

In general, specialized call and return instructions are used
to transfer the control flow between a main program and
subroutines or between different subroutines during the
execution of a program. These instructions allow the system
state for one program module (i.e., the main program or a
subroutine) to be saved prior to transferring control to another
program module, and the system state of the other program
module to be restored if it was previously saved. Causing the
control flow to jump out of a subroutine and back into the
main program outside of a call instruction or a return instruc-
tion, as described in the above example, could cause the
system to operate with an incorrect state. Therefore, although
a single, global MINRC may be able to improve the perfor-
mance of forward branch and forward jump instructions in a
system that uses resume counters, the global MINRC, alone,
may not be able to adequately support the execution subrou-
tines within a program.

The disclosure describes techniques for executing subrou-
tines in a processing system that uses MINRC-based control
flow techniques. The techniques for executing subroutines
may include maintaining one or more program module-spe-
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cific MINRCs. Each program module-specific MINRC may
correspond to a particular program module of a programto be
executed, and be indicative of a smallest resume counter value
from a set of one or more resume counter values that corre-
sponds to all threads that were active when execution of the
currently executing program module was initiated. By using
separate MINRCs for the main program and for each of the
subroutines, the processing system may ensure that subrou-
tines do not branch from a subroutine into the main program
or into another subroutine outside of the execution of a call or
return instruction. In this way, proper control flow for the
execution of subroutines may be ensured in a processing
system that uses a MINRC-based approach to control the
execution of forward jump and forward branch instructions.

Other techniques for managing divergent threads may
include using a stack to store synchronization tokens and
divergence tokens and using a software-triggered thread reac-
tivation system to control the reactivation of deactivated
threads. For example, each time a branch instruction occurs
that allows for divergence, a synchronization token may be
pushed onto a stack indicating the threads that were active
when the branch instruction was originally encountered. If
the branch instruction is a divergent branch instruction, then
the system may push a divergence token onto a stack indicat-
ing the threads that did not take the branch and a program
counter value corresponding to a next instruction for the
threads that did not take the branch. The system may continue
executing the remaining threads that did take the branch until
a specialized software flag and/or software instruction is
encountered that instructs the system to pop the divergence
token off of the stack. In response to popping the divergence
token off of the stack, the system may proceed to deactivate
the threads that did take the branch, and to reactivate and
execute the threads that did not take the branch. The system
may continue executing the remaining threads that did not
take the branch until a specialized software flag and/or soft-
ware instruction is encountered that instructs the system to
pop the synchronization token off of the stack. In response to
popping the synchronization token off of the stack, the system
may proceed to reactivate the threads such that the thread state
is the same as when the divergent branch instruction was
originally encountered.

One drawback of this approach, however, is that special
software instructions are needed in order to control the reac-
tivation of threads. Moreover, because this approach places
an entry in the stack each time a divergent branch occurs, the
number of nested divergent branches that the system can
handle is limited based on the size of the stack. A nested
divergent branch may refer to a divergent branch that occurs
during the execution of either the taken path or the not taken
path of another divergent branch instruction. That is, a nested
divergent branch is a divergent branch that occurs when one
or more threads have already been deactivated due to a pre-
viously occurring divergent branch instruction and such
threads have not yet reactivated.

In contrast to the software-triggered, stack-based
approaches for reactivating divergent threads described
above, no specialized software instructions are necessarily
needed to implement the resume counter-based approach of
this disclosure. Instead, a resume check may be performed, in
some examples, at each instruction cycle to determine
whether any deactivated threads are scheduled to be reacti-
vated for that cycle. This may allow the manner in which
divergent threads are deactivated and reactivated to be effec-
tively hidden from the programmer and/or compiler and
allow the programmer and/or compiler to generate a single set
of executable code that can be executed on both a parallel



US 9,229,721 B2

9

system designed to process divergent threads and a non-
parallel system that is not designed to process divergent
threads. In addition, the resume counter-based approach is
capable of executing code that was originally designed for a
non-parallel system without needing to recompile and/or
rewrite legacy code to enable divergent thread handling.

Moreover, because the resume counter-based approach
uses a finite set of resume counters, as opposed to a stack, to
control the reactivation of deactivated threads, the number of
nested divergent branches that such an approach can handle is
conceptually infinite and not limited based on the size of a
stack. It should be noted that, in some examples, the tech-
niques of this disclosure may use a stack to store MINRC
values. However, MINRC values are pushed onto and popped
off of such a stack in response to subroutine call and return
instructions and not in response to divergent branches per se.
Therefore, even though a MINRC stack may be used to imple-
ment the techniques of this disclosure, such a stack does not
limit the number of nested divergent branches that may occur
in such a system.

FIG. 1 is a block diagram illustrating an example process-
ing system 10 that may be used to implement the subroutine
execution techniques of this disclosure. Processing system 10
is configured to execute instructions for a program in a par-
allel manner. Processing system 10 includes a control unit 12,
processing elements 14A-14D (collectively “processing ele-
ments 14”), an instruction store 16, a data store 18, and
communication paths 20, 22, 24, 26 A-26D. Communication
paths 26 A-26D may be referred to collectively as “commu-
nication paths 26.”

Processing system 10 may be implemented in a personal
computer, a desktop computer, a laptop computer, a computer
workstation, a tablet computing device, a video game plat-
form or console, a wireless communication device (such as,
e.g., a so-called smartphone, a mobile telephone, a cellular
telephone, a satellite telephone, and/or a mobile telephone
handset), a landline telephone, an Internet telephone, a hand-
held device such as a portable video game device or a personal
digital assistant (PDA), a personal music player, a video
player, a display device, a television, a television set-top box,
a server, an intermediate network device, a mainframe com-
puter, any other type of device that processes and/or displays
graphical data, or any type of device that performs computa-
tions.

In some examples, control unit 12 and processing elements
14 may be hardware components that form a programmable
processor or part of a programmable processor. For example,
controlunit 12 and processing elements 14 may together form
a graphics processing unit (GPU) or a part of a GPU.

In some examples, processing system 10 may be a single-
instruction, multiple-data (SIMD) processing system that is
configured to execute a plurality of threads of execution for a
program using processing elements 14. In such a SIMD sys-
tem, processing elements 14 may together process a single
instruction at a time with respect to different data items. The
program may retire after all of the threads associated with the
program complete execution.

Control unit 12 is configured to control processing system
10 to execute instructions for a program stored in instruction
store 16. For each instruction of the program, control unit 12
may retrieve the instruction from instruction store 16 via
communication path 20, and process the instruction. In some
examples, control unit 12 may process the instruction by
causing an operation associated with the instruction to
execute on one or more of processing elements 14. For
example, the instruction retrieved by control unit 12 may be
an arithmetic instruction that instructs processing system 10
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to perform an arithmetic operation with respect to data items
specified by the instruction, and control unit 12 may cause
one or more of processing elements 14 to perform the arith-
metic operation on the specified data items. In further
examples, control unit 12 may process the instruction without
causing an operation to be performed on processing elements

Control unit 12 may cause an operation to be performed on
one or more of processing elements 14 by providing an
instruction to processing elements 14 via communication
path 22. The instruction may specify the operation to be
performed by processing elements 14. The instruction pro-
vided to the one or more of processing elements 14 may be the
same as or different than the instruction retrieved from
instruction store 16. In some examples, control unit 12 may
cause the operation to be performed on a particular subset of
processing elements 14 by one or both of activating a particu-
lar subset of processing elements 14 upon which the opera-
tion should be performed and deactivating another subset of
processing elements 14 upon which the operation should not
be performed. Control unit 12 may activate and/or deactivate
processing elements 14 by providing respective activation
and/or deactivation signals to each of processing elements 14
via communication path 22. In some examples, control unit
12 may activate and/or deactivate processing elements 14 by
providing activation and/or deactivation signals to processing
elements 14 in conjunction with providing an instruction to
processing elements 14. In further examples, control unit 12
may activate and/or deactivate processing elements 14 prior
to providing an instruction to processing elements 14.

Control unit 12 may execute a plurality of threads of execu-
tion for a program using processing elements 14. Each of
processing elements 14 may be configured to process instruc-
tions of the program for a respective thread of the plurality of
threads. For example, control unit 12 may assign each thread
of execution to an individual one of processing elements 14
for processing. The different threads of execution for the
program may execute the same set of instructions with respect
to different data items in a set of data items. For example,
processing element 14A may execute a first thread of execu-
tion for a program stored in instruction store 16 with respect
to a first subset of data items in a plurality of data items, and
processing element 14B may execute a second thread of
execution for the program stored in instruction store 16 with
respect to a second subset of data items in the plurality of data
items. The first thread of execution may be different than the
second thread of execution, and the first subset of data items
may be different than the second subset of data items.

In some examples, control unit 12 may activate and deac-
tivate individual threads in the plurality of threads of execu-
tion. When control unit 12 deactivates a thread, control unit
12 may also deactivate and/or disable the processing element
14A-14D that is assigned to execute the thread. Similarly,
when control unit 12 activates a thread, control unit 12 may
also activate the processing element 14A-14D that is assigned
to execute the thread. Control unit 12 may activate and deac-
tivate various combinations of one or more threads to assist in
the handling of divergent branch conditions as explained in
further detail later in this disclosure.

As used herein, an active thread may refer to a thread that
is activated and currently configured to execute instructions
of'a program. An inactive thread may refer to a thread that is
deactivated and currently configured to not execute instruc-
tions of the program. For a plurality of threads executing in
processing system 10 during a given processing cycle, each of
the active threads may be configured to process an instruction
of'the program identified by a global program counter register
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for the plurality threads during the processing cycle. For
example, control unit 12 may activate processing elements 14
that are assigned to active threads in order to configure such
processing elements 14 to process the instruction of the pro-
gram during the processing cycle. On the other hand, each of
the inactive threads may be configured to not process the
instruction of the program during the processing cycle. For
example, control unit 12 may deactivate processing elements
14 that are assigned to inactive threads to configure such
processing elements 14 to not process the instruction of the
program during the processing cycle.

In some examples, an instruction processing cycle may
refer to the time interval between successive loads of the
program counter. For example, an instruction processing
cycle may refer to the time between when the program
counter is loaded with a first value associated with a first
instruction and when the program counter is loaded with a
second value associated with a second instruction. The sec-
ond instruction may be the instruction that is processed by the
system immediately after the first instruction. The first and
second values may be the same or different values, and the
first and second instructions may be the same or different
instructions. In some examples, an instruction processing
cycle may refer to the time interval between successive syn-
chronous loads of the program counter. A synchronous load
of'the program counter may, in some examples, refer to a load
that is triggered by a clock signal. The instruction processing
cycle may be alternatively referred to herein as an instruction
cycle or as a processing cycle. In some examples, the instruc-
tion processing cycle may correspond to one or more clock
cycles.

Sometime prior to the processing of the next instruction,
control unit 12 determines a next instruction to be processed
by processing system 10. The manner in which control unit 12
determines the next instruction to be processed is different
depending on whether the most recently executed instruction
is a control flow instruction. If the most recently executed
instruction is not a control flow instruction, then control unit
12 may determine that the next instruction to be processed by
processing system 10 corresponds to a next sequential
instruction stored in instruction store 16. For example,
instruction store 16 may store instructions for a program in an
ordered sequence, and the next sequential instruction may be
an instruction that occurs immediately after the most recently
executed instruction in the ordered sequence of instructions.

If the most recently executed instruction is a control flow
instruction, then control unit 12 may determine the next
instruction to be processed by processing system 10 based on
information specified in the control flow instruction. For
example, the control flow instruction may be an uncondi-
tional control flow instruction (e.g., an unconditional branch
instruction or a jump instruction) in which case control unit
12 may determine that the next instruction to be processed by
processing system 10 is a target instruction identified by the
control flow instruction. As another example, the control flow
instruction may be a conditional control flow instruction (e.g.,
a conditional branch instruction) in which case control unit 12
may select one of a target instruction identified by the control
flow instruction or a next sequential instruction stored in
instruction store 16 as the next instruction to process from
instruction store 16.

As used herein, a control flow instruction may refer to an
instruction that directs control unit 12 to determine a next
instruction to execute based on a technique other than uncon-
ditionally selecting a next sequential instruction. A control
flow instruction may specity a target instruction stored in
instruction store 16. For example, a control flow instruction
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may include a value indicative of a target program counter
value that corresponds to a target instruction stored in instruc-
tion store 16. As another example, a control flow instruction
may specify a target instruction by directing control unit 12 to
pop a return address off a stack storage structure. The return
address may correspond to a target instruction stored in
instruction store 16. The target instruction may, in some
examples, be different than the next sequential instruction
stored in instruction store 16.

High-level program code may include control flow state-
ments such as, e.g., if, switch, do, for, while, continue, break,
and goto statements. A compiler may translate the high-level
control flow statements into low-level, e.g., machine-level,
control flow instructions. An instruction that is not a control
flow instruction may be referred to herein as a sequential
instruction. A sequential instruction may refer to an instruc-
tion where control unit 12 necessarily selects a next sequen-
tial instruction as being the next instruction to execute. A
sequential instruction may, in some examples, not include
information that identifies a target instruction.

For control flow instructions, the information that identi-
fies the target instruction may be a value indicative of a target
instruction stored in instruction store 16. In some examples,
the value indicative of the target instruction may be a value
indicative of an instruction address corresponding to the tar-
getinstruction stored in instruction store 16. The value indica-
tive of the instruction address may, in some cases, be the
address of the target instruction stored in instruction store 16.
In additional cases, the value indicative of the instruction
address may be a value used to calculate the address of the
target instruction. In further examples, the value indicative of
the instruction address may be a value indicative of a target
program counter value that corresponds to the target instruc-
tion. The value indicative of the target program counter value
may, in some cases, be the target program counter value that
corresponds to the target instruction. In additional cases, the
value indicative of the target program counter value may be a
value used to calculate the target program counter value. The
target program counter value that corresponds to the target
instruction may, in some examples, be equal to the address of
the target instruction stored in instruction store 16.

A control flow instruction may be a forward control flow
instruction or a backward control flow instruction. The prop-
erty of whether the control flow instruction is forward or
backward may be referred to as the direction of the control
flow instruction. A forward control flow instruction may be a
control flow instruction where the target instruction occurs
after the control flow instruction in the ordered sequence of
instructions stored in instruction store 16. A backward control
flow instruction may be a control flow instruction where the
target instruction occurs prior to the next sequential instruc-
tion in the ordered sequence of instructions stored in instruc-
tion store 16. The next sequential instruction may occur
immediately after the control flow instruction in the ordered
sequence of instructions.

A control flow instruction may be a conditional control
flow instruction or an unconditional control flow instruction.
A conditional control flow instruction includes information
that specifies a condition for jumping to the target instruction
associated with the control flow instruction. When processing
a conditional control flow instruction, if control unit 12 deter-
mines that the condition is satisfied, then control unit 12 may
determine that the next instruction to be processed is the
target instruction. On the other hand, if control unit 12 deter-
mines that the condition is not satisfied, then control unit 12
may determine that the next instruction to be processed is the
next sequential instruction stored in instruction store 16. An
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unconditional control flow instruction does not include infor-
mation that specifies a condition for jumping to the target
instruction associated with the control flow instruction. When
processing an unconditional control flow instruction, control
unit 12 may unconditionally determine that the next instruc-
tion to process is the target instruction identified by the con-
trol flow instruction. In other words, the determination in such
a case is not conditioned upon any condition specified in the
unconditional control flow instruction itself.

An example of a conditional control flow instruction
includes a conditional branch instruction. The use of the
generic term branch instruction in this disclosure typically
refers to a conditional branch instruction unless the branch
instruction is otherwise designated as an unconditional
branch instruction. Examples of unconditional control flow
instructions include jump instructions, call instructions, and
return instructions.

A conditional branch instruction may include conditions
that are specified with respect to one or more data item values.
For example, one type of condition may be a comparison
condition that compares a first data item value to a second
data item value for each active thread executing in processing
system 10. Comparing the data item values may include, e.g.,
determining whether the first data item value is greater than,
less than, not greater than, not less than, equal to, or not equal
to the second data item value. Another type of condition may
be a zero check condition that determines whether a data item
value for each active thread executing in processing system
10 is equal to or not equal to zero. Because each of processing
elements 14 operates on different data items, the result of
evaluating the condition may be different for each active
thread executing in processing system 10. If either all of the
active threads executing in processing system 10 satisfy the
branch condition or all of the active threads executing in
processing system 10 do not satisfy the branch condition, then
a uniform branching condition occurs and the branching
divergence for the branch instruction is said to be uniform. On
the other hand, if at least one of the active threads executing in
processing system 10 satisfies the branch condition and at
least one of the active threads executing in processing system
10 does not satisfy the branch condition, then a divergent
branching condition occurs and the branching divergence for
the branch instruction is said to be divergent.

The threads executing in processing system 10 may
execute the same instruction in a lockstep fashion. In other
words, each of processing elements 14 may together execute
the same instruction for all active threads during a processing
cycle. However, when a divergent branch condition occurs,
the threads that satisfy that branch condition may be sched-
uled to execute next instructions that are different than the
next instructions scheduled to be executed by the threads that
do not satisfy the branch condition. This may hinder the
threads in processing system 10 from executing a single
instruction in a lockstep fashion.

To deal with a divergent branch condition, control unit 12
may, in some examples, deactivate one subset of the threads
that either satisfied or did not satisfy the branch condition
such that the remaining active threads are all synchronized to
the same program counter address. To control the reactivation
of the threads, control unit 12 may use a resume counter-
based approach that involves allocating a resume counter for
each thread executing in the processing system, processing
the divergent threads according to a “least-valued address
first” thread processing order, and performing a resume check
operation prior to the execution of every instruction.

More specifically, control unit 12 may deactivate one or
more threads in response to a divergent branch condition and,
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for each thread being deactivated, set a resume counter (e.g.,
a register) for the respective thread to a value indicative of a
program counter value at which the respective thread is
scheduled to be reactivated. The program counter value at
which the respective thread is scheduled to be reactivated
may, in some examples, be a program counter value that
corresponds to a next instruction to be executed by the deac-
tivated thread. If a thread is active, the resume counter for the
thread may be set to default value, which may correspond to
a value greater than the address range of the program (e.g., a
max register value). Each time the program counter register is
loaded with a new program counter value, control unit 12 may
perform a resume check operation, which may reactivate any
threads where the resume counter value for the thread is equal
to the new program counter value. The resume check opera-
tion may, in some examples, compare the resume counter
value associated with each deactivated thread to the newly
loaded program counter value to determine if any of the
deactivated threads are scheduled to be reactivated prior to
executing the instruction.

The “least-valued address first” thread processing order
may differentiate which threads are deactivated in response to
a divergent branch instruction based on the direction (i.e.,
forward or backward) of the branch instruction. For a diver-
gent backward branch instruction, control unit 12 may deac-
tivate threads for which the branching condition is not satis-
fied, set the resume counter value for each thread being
deactivated to a value associated with a next sequential
instruction that occurs after the branch instruction, load the
program counter with a value associated with a target instruc-
tion specified by the branch instruction, and proceed to
execute those threads for which the branching condition is
satisfied. For a divergent forward branch instruction, control
unit 12 may deactivate threads for which the branching con-
dition is satisfied, set the resume counter value for each thread
being deactivated to a value associated with a target instruc-
tion specified by the branch instruction, load the program
counter with a value associated with a next sequential instruc-
tion that occurs after the branch instruction, and proceed to
execute those threads for which the branching condition is not
satisfied. Deactivating threads in this manner ensures that
divergent threads that are scheduled to process instructions at
lower-valued addresses execute prior to threads that are
scheduled to process instructions at higher-valued addresses
(i.e., a “least-valued address first” thread processing order).
Such a processing order may prevent the control flow from
jumping over any resume points for inactive threads without
reactivating such threads and prematurely ending the pro-
gram. In other words, such a processing order ensures that all
threads will be active and will have completed processing by
the time the last program statement has finished execution.

According to this disclosure, control unit 12 may control
execution of a program based on a first MINRC associated
with the program, and control execution of a subroutine of the
program based on a second MINRC associated with the sub-
routine. The first MINRC may specify a value that is indica-
tive of a smallest resume counter value of a plurality of
resume counter values associated with a plurality of threads
executing in processing system 10. The second MINRC may
specify a value indicative of a smallest resume counter value
from a subset of the plurality of resume counter values that
corresponds to all of the threads that are active when execu-
tion of the subroutine is initiated. In some cases, the plurality
of'resume counter values for the first MINRC may correspond
to all of the threads that are active when execution of the
program is initiated. In some examples, when the program is
atop-level program (e.g., amain program), all threads may be
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active when the program is initiated. In such examples, the
first MINRC may be a smallest resume counter value of a set
of resume counter values associated with all threads execut-
ing in processing system 10.

In general, control unit 12 may control execution of the
processing system 10 based on a plurality of MINRCs. Each
MINRC may be used to control a particular program module
within an entire program. As used herein, a program module
may refer to a main program module (i.e., the program mod-
ule that the program initially executes when execution of the
program is initiated) and/or to a subroutine program module
that is called by the main program module or by another
subroutine program module. In some examples, control unit
12 may maintain a MINRC value for the current program
module being executed, and control execution of current pro-
gram module based on the MINRC value corresponding to
the current program module. The MINRC value may be
indicative of a smallest resume counter value from a set of one
or more resume counter values that corresponds to all threads
that are active when execution of the current program module
is initiated.

When control unit 12 switches to executing a different
program module, control unit 12 may switch the MINRC that
is used to control execution of processing system 10. For
example, if control unit 12 switches from executing a caller
program module to executing a subroutine program module,
then control unit 12 may switch the MINRC that is used to
control execution of processing system 10 from a first
MINRC associated with the caller program module to a sec-
ond MINRC associated with the subroutine module. Simi-
larly, after completing execution of the subroutine program
module, control unit 12 may switch the MINRC that is used to
control execution of processing system 10 from the second
MINRC associated with the subroutine module to the first
MINRC value associated with the caller program module.
The caller program module may be a main program module or
a subroutine program module.

In some examples, controlling execution of a program
module based on a particular MINRC may include control-
ling the execution of forward control flow instructions
included in the program module based on that particular
MINRC. For example, in response to executing a forward
jump instruction or a forward conditional branch instruction
where the branch condition is uniformly satisfied, control unit
12 may determine the next instruction to execute based on the
MINRC value. Control unit 12 may, for example, compare the
target program counter value specified by the branch or jump
instruction to the MINRC value and select either the target
program counter value or the MINRC value to load into the
program counter. In one example, when the target program
counter value is less than or equal to the MINRC value,
control unit 12 may select the target program counter value as
the value to load into the program counter. In such an
example, when the target program counter value is not less
than or equal to the MINRC value, control unit 12 may select
the MINRC value as the value to load into the program
counter. Loading either the target program counter value or
the MINRC value into the program counter prevents process-
ing system 10 from wasting program cycles due to increment-
ing the program counter through values where no execution
takes place. Moreover, because the MINRC value is indica-
tive of the smallest resume counter value of all inactive
threads, executing forward jumps and uniform forward
branches in the above-described manner will ensure that the
control flow does not jump over the resume points of any
inactive threads. In this way, controlling execution of process-
ing system 10 based on one or more MINRC values may
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improve the performance of forward jump instructions and
forward branch instructions in a system that utilizes resume
counters for divergent thread handling.

According to some aspects of this disclosure, control unit
12 may be configured to switch a MINRC that is used to
control execution of processing system 10 upon entry and/or
exit of a subroutine. For example, in response to executing a
call instruction, control unit 12 may be configured to save a
state of a first MINRC that corresponds to the caller program,
to initialize a second MINRC that corresponds to the subrou-
tine program, and to control execution of the subroutine pro-
gram based on the second MINRC that corresponds to the
subroutine program. In response to executing a return instruc-
tion, the processing system may be configured to restore the
saved state of the first MINRC that corresponds to the caller
program, and to resume controlling the execution of the main
program based on the restored state of first MINRC.

Control unit 12 may, in some examples, save the state of the
first MINRC that corresponds to the caller program at least in
part by pushing a value stored in a MINRC register for the first
MINRC onto a stack storage structure. In such examples,
control unit 12 may restore the saved state of the MINRC that
corresponds to the caller program at least in part by popping
the saved state of the first MINRC from the stack storage
structure, and overwriting a value stored in the MINRC reg-
ister with a value corresponding to the saved state of the first
MINRC. When executing the call instruction, control unit 12
may initialize a second MINRC that corresponds to the sub-
routine program at least in part by setting the second MINRC
equal to an a default value (e.g., a maximum register value or
avalue that is greater than the address range of the program).

When any of the resume counter values in processing sys-
tem 10 is set to a new value, control unit 12 may update the
MINRC value to reflect the new smallest resume counter
value. Control unit 12 may update the MINRC value, for
example, in response to deactivating one or more threads
and/or in response to performing a resume check operation.

According to some aspects of this disclosure, when updat-
ing a MINRC value, control unit 12 may use various tech-
niques to exclude resume counter values that are associated
with threads that were inactive when execution of a subrou-
tine was initiated from being used to update the MINRC
associated with the subroutine. By excluding such resume
counter values from consideration while updating the
MINRC, the techniques of this disclosure may ensure that a
subroutine-specific MINRC is updated to values that are
within the program space associated with the subroutine.

In some examples, control unit 12 may exclude resume
counter values that are greater than or equal to the entry point
of the subroutine from affecting the resulting MINRC value
during a MINRC update. In further examples, control unit 12
may maintain a set of flags where each flag in the set of flags
is indicative of whether a respective thread was active when
execution of a subroutine was initiated. In such examples,
control unit 12 may exclude resume counter values that were
not active when execution of the subroutine was initiated
from affecting the resulting MINRC value during a MINRC
update.

Control unit 12 is communicatively coupled to instruction
store 16 via communication path 20, to processing elements
14 via communication path 22, and to data store 18 via com-
munication path 24. Control unit 12 may use communication
path 20 to send read instructions to instruction store 16. A
read instruction may specify an instruction address in instruc-
tion store 16 from which an instruction should be retrieved.
Control unit 12 may receive one or more program instructions
from instruction store 16 in response to sending the read
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instruction. Control unit 12 may use communication path 22
to provide instructions to processing elements 14, and in
some examples, to receive data (e.g., the result of a compari-
son instruction for evaluating a branch condition) from pro-
cessing elements 14. In some examples, control unit 12 may
use communication path 24 to retrieve data item values
directly from data store 18 (e.g., to evaluate a branch condi-
tion). Although FIG. 1 illustrates processing system 10 as
including communication path 24, in other examples, pro-
cessing system 10 may not include communication path 24.

Each of processing elements 14 may be configured to per-
form operations to assist processing system 10 in processing
instructions for the program stored in instruction store 16. In
some examples, each of processing elements 14 may be con-
figured to perform the same set of operations. For example,
each of processing elements 14 may implement the same
instruction set architecture (ISA). In additional examples,
each of processing elements 14 may be an arithmetic logic
unit (ALU). In further examples, processing system 10 may
be a vector processor (e.g., a graphics processing unit (GPU)
vector processor), and each of processing elements 14 may be
a processing element within the vector processor. In addi-
tional examples, processing system 10 may be a SIMD execu-
tion unit, and each of processing elements 14 may be a SIMD
processing element within the SIMD execution unit.

The operations performed by processing elements 14 may
include arithmetic operations, logic operations, comparison
operations, etc. Arithmetic operations may include opera-
tions such as, e.g., an addition operation, a subtraction opera-
tion, a multiplication operation, a division operation, etc. The
arithmetic operations may also include, e.g., integer arith-
metic operations and/or floating-point arithmetic operations.
The logic operations may include operations, such as, e.g., a
bit-wise AND operation, a bit-wise OR operation, a bit-wise
XOR operation, etc. The comparison operations may include
operations, such as, e.g., a greater than operation, a less than
operation, an equal to zero operation, a not equal to zero
operation, etc. The greater than and less than operations may
determine whether a first data item is greater than or less than
a second data item. The equal to zero and not equal to zero
operations may determine whether a data item is equal to zero
ornot equal to zero. The operands used for the operations may
be stored in registers contained in data store 18.

Each of processing elements 14 may be configured to per-
form an operation in response to receiving an instruction from
control unit 12 via communication path 22. In some
examples, each of processing elements 14 may be configured
to be activated and/or deactivated independently of the other
processing elements 14. In such examples, each of processing
elements 14 may be configured to perform an operation in
response to receiving an instruction from control unit 12
when the respective processing element 14A-14D is acti-
vated, and to not perform the operation in response to receiv-
ing the instruction from control unit 12 when the respective
processing element 14A-14D is deactivated (i.e., not acti-
vated).

Each of processing elements 14A-14D may be communi-
catively coupled to data store 18 via a respective communi-
cation path 26 A-26D. Processing elements 14 may be con-
figured to retrieve data from data store 18 and store data to
data store 18 via communication paths 26. The data retrieved
from data store 18 may, in some examples, be operands for the
operations performed by processing elements 14. The data
stored to data store 18 may, in some examples, be the results
of operations performed by processing elements 14.

Instruction store 16 is configured to store a program for
execution by processing system 10. The program may be
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stored as an ordered sequence of instructions. In some
examples, each instruction may be addressed by a unique
instruction address. In such examples, instruction addresses
for later instructions in the sequence of instructions are
greater than instruction addresses for earlier instructions in
the sequence of instructions. The program instructions, in
some examples, may be machine-level instructions. That is,
in such examples, the instructions may be in a format that
corresponds to the ISA of processing system 10. Instruction
store 16 is configured to receive a read instruction from con-
trol unit 12 via communication path 20. The read instruction
may specify an instruction address from which an instruction
should be retrieved. In response to receiving the read instruc-
tion, instruction store 16 may provide an instruction corre-
sponding to the instruction address specified in the read
instruction to control unit 12 via communication path 20.
Instruction store 16 may be any type of memory, cache or
combination thereof. When instruction store 16 is a cache,
instruction store 16 may cache instructions associated with a
program that is stored in a program memory external to pro-
cessing system 10. Although instruction store 16 is illustrated
as being within processing system 10, in other examples,
instruction store 16 may be external to processing system 10.
Data store 18 is configured to store data items used by
processing elements 14. In some examples, data store 18 may
comprise a plurality of registers, each register being config-
ured to store a respective data item within a plurality of data
items operated on by processing system 10. Data store 18 may
be coupled to one or more communication paths (not shown)
that are configured to transfer data between the registers in
data store 18 and a memory or cache (not shown).
Communication paths 20, 22, 24, 26 may be configured to
provide communication of signals, instructions and/or data
between the different components in processing system 10 as
illustrated in FIG. 1. Communication paths 20, 22, 24, 26 may
each be implemented, for example, as one or more busses
(e.g., on-chip buses) and/or electrical interconnects (e.g.,
wires and/or circuit traces) that carry electrical signals
between the different components shown in FIG. 1.
Although FIG. 1 illustrates a single data store 18 for storing
data used by processing elements 14, in other examples,
processing system 10 may include separate, dedicated data
stores for each of processing elements 14. FIG. 1 illustrates a
processing system 10 having four processing elements 14 for
exemplary purposes. In other examples, however, processing
system 10 may have the same or a different number of pro-
cessing elements 14 in the same or a different configuration.
FIG. 2 is a block diagram illustrating the control unit 12 in
the example processing system 10 of FIG. 1 in greater detail
according to this disclosure. Control unit 12 includes a pro-
gram counter 28, a fetch module 30, a decode module 32 and
a control flow module 34. Control flow module 34 may be
alternatively referred to herein as a control flow unit.
Program counter 28 is configured to store a program
counter value. In some examples, program counter 28 may be
a hardware register, such as, e.g., a program counter register.
The program counter value may be indicative of an instruc-
tion stored in instruction store 16. The program counter value
may, in some cases, be equal to the instruction address of the
instruction stored in instruction store 16. In additional cases,
the program counter value may be used to compute the
instruction address of the instruction stored in instruction
store 16. For example, the program counter value may be
added to an offset value to generate the instruction address.
Program counter 28 may be referred to herein as a “global
program counter” or a “global program counter register”
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because program counter 28 may be used as a single program
counter for all of processing elements 14.

Fetch module 30 is configured to fetch (e.g., retrieve) an
instruction from instruction store 16 based on the program
counter value stored in program counter 28. For example,
fetch module 30 may fetch an instruction from an instruction
address identified by the program counter value stored in
program counter 28. Fetch module 30 may provide the
fetched instruction to decode module 32 for further process-
ing.

Decode module 32 is configured to decode the instruction
received from fetch module 30. Decoding the instruction may
involve determining whether the instruction is a type of
instruction that can be processed by processing elements 14.
Ifthe instruction is a type of instruction that can be processed
by processing elements 14, then decode module 32 may cause
the instruction to execute on one or more of processing ele-
ments 14. In some examples, decode module 32 may cause
the instruction to execute on all of processing elements 14. In
other examples, decode module 32 may cause the instruction
to execute on less than all of processing elements 14. Causing
the instruction to execute on one or more of processing ele-
ments 14 may, in some cases, include issuing the instruction
to one or more of processing elements 14 for execution. For
example, decode module 32 may issue a sequential instruc-
tion to all processing elements 14 that correspond to active
threads for processing. If the instruction is not the type of
instruction that can be processed by processing elements 14,
then control unit 12 may process the instruction without issu-
ing the instruction to any of processing elements 14 for pro-
cessing. For example, the instruction may be a control flow
instruction of the type that does not require processing by
processing elements 14, in which case control unit 12 may
process the instruction without issuing the instruction to any
of processing elements 14.

In either case, decode module 32 may forward control
information to control flow module 34 for further processing.
In some examples, the control information may be the
instruction itself. In further examples, the control information
may include, e.g., information indicative of whether the
instruction is a control flow instruction or a sequential instruc-
tion. If the instruction is a control flow instruction, the control
information may further include, e.g., information indicative
of whether the instruction is a branch instruction, a jump
instruction, a call instruction, or a return instruction. If the
instruction is a branch or jump instruction, the control infor-
mation may further include, e.g., information indicative of
whether the branch or jump instruction is a forward or back-
ward branch or jump instruction. If the instruction is a branch
instruction, the control information may further include, e.g.,
information specifying the branch condition.

Instructions that are of a type that can be processed by
processing elements 14 may include arithmetic instructions
and logic instructions. An arithmetic instruction may refer to
an instruction that instructs processing elements 14 to per-
form an arithmetic operation, and a logic instruction may
refer to an instruction that instructs processing elements 14 to
perform a logic operation. In some examples, a control flow
instruction may be an instruction that can be processed by
processing elements 14 (e.g., the control flow instruction may
include a branch condition that is evaluated by processing
elements 14). Instructions that are not of a type that can be
processed by processing elements 14 may include control
flow instructions where the branch condition is evaluated by
control unit 12 and/or control flow instructions that do not
have a branch condition.

10

15

20

25

30

35

40

45

50

55

60

65

20

Control flow module 34 may determine a program counter
value associated with a next instruction to be processed by
control unit 12, and load the program counter value into
program counter 28. If the previously fetched instruction is a
sequential instruction, then control flow module 34 may
select a program counter value that is indicative of a next
sequential instruction to load into program counter 28. If the
previously fetched instruction is a branch or jump instruction,
then control flow module 34 may utilize a MINRC to select a
new program counter value to load into program counter 28.
For example, control flow module 34 may select one of a
target program counter value associated with a target instruc-
tion specified by the control flow instruction, a program
counter value indicative of a next sequential instruction, or a
MINRC value to load into program counter 28. If the previ-
ously fetched instruction is a call instruction, then control
flow module 34 may select a target program counter value
indicative of the target instruction specified by the call
instruction to load into program counter 28. If the previously
fetched instruction is a return instruction, then control flow
module 34 may select a program counter value indicative of a
return address that is popped from a subroutine call stack to
load into program counter 28.

Control flow module 34 may store a resume counter value
for each thread executing in processing system 10. For
example, the number of resume counter values stored in con-
trol flow module 34 may be equal to the number of processing
elements 14 contained in processing system 10. For each
resume counter value, if the thread corresponding to the
respective resume counter value is inactive, then the resume
counter value may be indicative of a program counter value at
which the inactive thread is scheduled to be activated or
reactivated. Otherwise, if the thread corresponding to the
respective resume counter value is active, then the resume
counter value may be, in some examples, set to a default value
(e.g., a maximum register value or a value that is a largest
value that can be represented in a storage slot or register for
the resume counter).

Control flow module 34 may store a MINRC value for the
for the program module that is currently being executed in
processing system 10. The MINRC value may be indicative
of a smallest resume counter value from the set of resume
counter values associated with the threads that are active
when the execution of the processing module is initiated. If all
threads are active, the minimum resume counter value may, in
some examples, be set to a maximum value, i.e., a value that
is the largest value that can be represented in the storage slot
for the minimum resume counter.

Control flow module 34 may store an active flag for each
thread executing in processing system 10. For example, the
number of active flags stored in control flow module 34 may
be equal to the number of processing elements 14 contained in
processing system 10. Each active flag may indicate whether
or not the thread associated with the active flag is active or
inactive. In some examples, the active flag may be a single bit
that is set to indicate that the thread associated with the active
flag is active, and reset to indicate that the thread associated
with the active flag is inactive. Control flow module 34 may
set and reset the active flag for a particular thread when
activating and deactivating the thread.

Control flow module 34 may manage one or more stacks to
assist in processing subroutine call instructions and subrou-
tine return instructions. For example, control flow module 34
may push a return address onto a subroutine stack and a
MINRC value onto a MINRC stack in response to executing
a call instruction. As another example, control flow module
34 may pop a return address from the subroutine stack and a



US 9,229,721 B2

21

MINRC value from the MINRC stack in response to execut-
ing a return instruction. The subroutine stack and the MINRC
stack may be the same or different stacks.

In some examples, control flow module 34 may store a set
of flags where each flag in the set of flags indicates whether a
respective thread was active at the time execution of the
program module currently being executed was activated. In
such examples, control flow module 34 may push the flag
values for the set of flags onto the stack in response to execut-
ing a call instruction and pop the flag values for the set flags
off of the stack in response to executing a return instruction.

Control flow module 34 may, in some examples, store a
program state. For example, a first program state may indicate
that all threads are active, a second program state may indi-
cate that at least on thread is active and at least one thread is
inactive and a third program state may indicate that all threads
areinactive. The program state may be used in such examples,
to select a program counter value to load into program counter
28.

Control flow module 34 may be configured, in some
examples, to activate and deactivate one or more of process-
ing elements 14 via communication path 22. In additional
examples, control flow module 34 may instruct decode mod-
ule 32 to activate and deactivate particular processing ele-
ments 14.

In some examples, processing system 10 of FIGS. 1 and 2
may be included in a graphics processing unit (GPU). In such
examples, processing system 10 may be used to implement a
shader unit contained within the GPU, such as, e.g., a vertex
shader unit, a pixel shader unit, a fragment shader unit, a
geometry shader unit, a unified shader unit, etc. In such
examples, processing system 10 may be configured to
execute shader programs, such as, e.g., vertex shader pro-
grams, fragment shader programs, geometry shader pro-
grams, etc.

FIG. 3 is a block diagram illustrating an example control
flow module 34 that may be used to implement the subroutine
execution techniques of this disclosure. Control flow module
34 includes a branch condition evaluator 40, a minimum
resume counter (MINRC) register 42, a next instruction gen-
erator 44, resume counter registers 46, a thread state manager
48, a subroutine handler 50 and a stack storage structure 52.

Branch condition evaluator 40 is configured to evaluate the
branch condition specified by a conditional branch instruc-
tion for each active thread executing in processing system 10.
Branch condition evaluator 40 may receive information
indicative of whether the currently processed instruction is a
branch instruction from decode module 32, and if the cur-
rently processed instruction is a branch instruction, branch
condition evaluator 40 may also receive from decode module
32 information indicative of a branch condition for the cur-
rently processed branch instruction. In some examples, one or
both of the information indicative of whether the currently
processed instruction is a branch instruction and the informa-
tion indicative of a branch condition may be a representation
of the instruction itself. In further examples, one or both of
these information components may be a signal that is gener-
ated by decode module 32.

Branch condition evaluator 40 may evaluate the same
branch condition for each thread using thread-specific data. In
some examples, branch condition evaluator 40 may obtain
any data needed for evaluating the branch condition for each
thread, and internally evaluate the branch condition for each
thread to generate a branch condition evaluation result for
each thread. In further examples, branch condition evaluator
40 may direct each processing element 14 that corresponds to
an active thread to obtain the data needed for evaluating the
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branch condition for the respective thread, to evaluate the
branch condition, and to provide a branch condition evalua-
tion result for the respective thread to branch condition evalu-
ator 40. In either case, branch condition evaluator 40 may
determine, for each active thread, whether the branching con-
dition is satisfied for the respective thread.

In some examples, branch condition evaluator 40 may
determine whether the branching divergence for the branch
instruction is uniform or divergent. For example, branch con-
dition evaluator 40 may determine whether all active threads
satisfied the branch condition and whether all active threads
did not satisfy the branch condition. If all active threads either
satisfied or did not satisfy the branch condition, then branch
condition evaluator 40 may determine that the branching
divergence for the branch instruction is uniform. If some
active threads satisfied the branch condition and some active
threads did not satisfy the branch condition, then branch
condition evaluator 40 may determine that the branching
divergence for the branch instruction is divergent. In
examples where the branching divergence is uniform, branch
condition evaluator 40 may determine whether the branching
condition is uniformly satisfied or uniformly not satisfied.

Branch condition evaluator 40 may provide branch condi-
tion status information to thread state manager 48. The branch
condition status information may indicate, for each active
thread executing in processing system 10, whether the respec-
tive thread satisfied the branch condition or did not satisfy the
branch condition (i.e., the branch condition evaluation result
for the thread). Thread state manager 48 may use the branch
condition status information to determine whether to activate
and/or deactivate particular threads in response to executing
the branch instruction.

Branch condition evaluator 40 may provide branching
divergence information to next instruction generator 44. The
branching divergence information may include information
indicative of whether the branching divergence for the branch
instruction is uniform or divergent. If the branching diver-
gence for the branch instruction is uniform, then the branch-
ing divergence information may also include information
indicative of whether the branch condition is uniformly sat-
isfied or uniformly not satisfied. In some examples, the
branching divergence information may take the form of
branch condition status information for each of the active
threads. In other examples, the branching divergence infor-
mation may not necessarily include branch condition status
information for the individual threads.

MINRC register 42 may store a MINRC value for the
currently executing program module in processing system 10.
The MINRC value may be indicative of a smallest resume
counter value of all threads that are active when execution of
the currently executing program module is initiated. The
MINRC value may be updated and/or modified by one or
more of thread state manager 48, subroutine handler 50 and
stack storage structure 52. Control flow module 34 is config-
ured to control the execution of the currently executing pro-
gram module based on MINRC register 42 as will be
described in further detail with respect to next instruction
generator 44. MINRC register 42 is communicatively
coupled to next instruction generator 44, resume counter reg-
isters 46, subroutine handler 50 and stack storage structure
52.

Next instruction generator 44 is configured to generate a
program counter value corresponding to a next instruction to
be executed based on information indicative of the type of
instruction currently being executed, information indicative
of'the branching divergence of the instruction currently being
executed if the instruction is a branch instruction, information
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indicative of a target instruction specified by the instruction
currently being executed if any, information indicative of a
return address if the instruction is a return instruction, and the
MINRC value stored in MINRC register 42 if the instruction
is a forward branch or jump instruction. Next instruction
generator 44 may cause the program counter value generated
by next instruction generator 44 to be loaded into program
counter 28 when execution of the next instruction cycle in
initiated.

The information indicative of the type of instruction cur-
rently being executed may be received from decode module
32 and include, e.g., information indicative of whether the
instruction is a sequential instruction or a control flow instruc-
tion. If the instruction is a control flow instruction, the infor-
mation indicative of the type of instruction may include, e.g.,
information indicative of whether the instruction is a branch
instruction, a jump instruction or a subroutine instruction
(e.g., acall or return instruction). If the instruction is a branch
or jump instruction, the information indicative of the type of
instruction may include, e.g., information indicative of
whether the instruction is a forward branch or jump instruc-
tion or whether the instruction is a backward branch or jump
instruction.

The information indicative of the branching divergence of
the instruction may be received from branch condition evalu-
ator 40 and include, e.g., information indicative of whether
the branching divergence is uniform or divergent. If the
branching divergence is uniform, the information indicative
of the branching divergence of the instruction may include,
e.g., information indicative of whether the branch condition is
uniformly satisfied or uniformly not satisfied.

The information indicative of the target instruction may be
received from decode module 32 and include, e.g., a target
program counter value or an offset value that is indicative of
a target program counter value. The offset value may be, for
example, a value that is added to the program counter to
generate the target program counter value. The information
indicative of the target instruction may be used to determine
a program counter for the next instruction to be executed
when the current instruction specifies a target instruction.
These instructions may include, for example, conditional
branch instructions, jump instructions, and call instructions.

The information indicative of the return address may be
received from stack storage structure 52. For example, sub-
routine handler 50 may push a return address onto stack
storage structure 52 when a subroutine call instruction is
executed. When the return instruction for the subroutine is
executed, subroutine handler 50 may pop the return address
off of stack storage structure 52, and provide the return
address to next instruction generator 44 to determine the
program counter value for the next instruction to be executed.

For sequential instructions, next instruction generator 44
selects a program counter value that corresponds to a next
sequential instruction as the program counter value to load
into program counter 28. The next sequential instruction may
refer to an instruction that occurs immediately after the
instruction currently being executed in an ordered sequence
of instructions for the program stored in instruction store 16.

For a backward jump instruction, next instruction genera-
tor 44 may select a target program counter value indicative of
the target instruction specified by the backward jump instruc-
tion as the program counter value to load into program
counter 28. For a forward jump instruction, next instruction
generator 44 may select a program counter value to load into
program counter 28 based on the MINRC value stored in
MINRC register 42 as described in further detail below.
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For a backward branch instruction, next instruction gen-
erator 44 may determine whether the branch condition for the
backward branch instruction is uniformly not satisfied. If the
branch condition for the backward branch instruction is uni-
formly not satisfied, then next instruction generator 44 may
select a program counter value that corresponds to a next
sequential instruction as the program counter value to load
into program counter 28. On the other hand, if the branch
condition for the backward branch instruction is uniformly
satisfied or divergent, then next instruction generator 44 may
select a target program counter value indicative of the target
instruction specified by the backward branch instruction as
the program counter value to load into program counter 28.

For forward branch instructions, next instruction generator
44 may determine whether the branch condition for the for-
ward branch instruction is uniformly not satisfied or diver-
gent. If the branch condition for the forward branch instruc-
tion is uniformly not satisfied or divergent, then next
instruction generator 44 may select a program counter value
that corresponds to a next sequential instruction as the pro-
gram counter value to load into program counter 28. If the
branch condition for the forward branch instruction is uni-
formly satisfied, then next instruction generator 44 may select
a program counter value to load into program counter 28
based on the MINRC value stored in MINRC register 42 as
described in further detail below.

For call instructions, next instruction generator 44 may
select a target program counter value indicative of a target
instruction specified by the call instruction as the program
counter value to load into program counter 28. For return
instructions, next instruction generator 44 may select a pro-
gram counter indicative of a return address popped from stack
storage structure 52 as the program counter value to load into
program counter 28.

As discussed above, in response to executing a forward
jump instruction or a forward branch instruction where the
branch condition is uniformly satisfied, next instruction gen-
erator 44 may select a program counter value to load into
program counter 28 based on the MINRC value stored in
MINRC register 42. In some examples, next instruction gen-
erator 44 may select one of a target program counter value
specified by the instruction or the MINRC value stored in
MINRC register 42 as a program counter value to load into
program counter 28 based on the MINRC value. For example,
next instruction generator 44 may, in some examples, deter-
mine whether the target program counter value is less than or
equal to the MINRC value. If the target program counter
value is less than or equal to the MINRC value, then next
instruction generator 44 may select the target program
counter value as the program counter value to load into pro-
gram counter 28. On the other hand, if the target program
counter value is not less than or equal to the MINRC value,
then next instruction generator 44 may select the MINRC
value as the program counter value to load into program
counter 28. Other comparison operations are also possible in
other examples including, e.g., determining whether the tar-
get program counter value is less than the MINRC value or
whether the MINRC value is greater than the target program
counter value. In this manner, next instruction generator 44
may control execution of the currently executing program
module based on the MINRC value stored in MINRC register
42.

Resume counter registers 46 store a plurality of resume
counter values for the threads executing in processing system
10. Each resume counter value may correspond to a respec-
tive thread executing in processing system 10 and may be
indicative of a program counter value at which the respective
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thread is scheduled to be activated if the respective thread is
inactive. Ifthe thread is active, the resume counter value is set
to a default value, which in some cases may be a value that is
greater than the range of valid program counter values used to
execute programs. For example, if the thread is active, the
resume counter may be set to a value that is a maximum value
(i.e., avalue that is the largest value that can be represented in
a storage slot or register for the resume counter). Because the
resume counter for a corresponding thread is set to a default
value when the thread is active, each resume counter may also
be indicative of whether a thread corresponding to the respec-
tive resume counter is active.

In some examples, resume counter registers 46 may
include a plurality of registers configured to store a plurality
of resume counter values. For example, each register may be
a resume counter register that is configured to store a resume
counter value for a respective one of the plurality of threads
executing in processing system 10. Resume counter registers
46 are communicatively coupled to thread state manager 48.

Thread state manager 48 is configured to manage the state
of the threads executing in processing system 10. For
example, thread state manager 48 may activate and deactivate
threads executing in processing system 10, update resume
counter registers 46, and update MINRC register 42 as appro-
priate.

Thread state manager 48 may deactivate one or more
threads in response to processing system 10 executing a
branch instruction with a divergent branch condition. For
example, thread state manager 48 may receive information
indicative of whether a divergent branch condition has taken
place from branch condition evaluator 40, information
indicative of whether the branch instruction is a forward
branch instruction or a backward branch instruction from
either branch condition evaluator 40 or decode module 32,
and information indicative of which threads satisfied the
branch condition and which threads did not satisfy the branch
condition. Thread state manager 48 may determine whether
the divergent branch instruction is a forward branch instruc-
tion or a backward branch instruction. If the divergent branch
instruction is a forward branch instruction, then thread state
manager 48 may deactivate each active thread that satisfied
the branch condition. If the divergent branch instruction is a
backward branch instruction, then thread state manager 48
may deactivate each active thread that did not satisfy the
branch condition.

For each thread being deactivated, thread state manager 48
may set a resume counter value stored in resume counter
registers 46 that corresponds to the respective thread to a
value indicative of a program counter value at which the
respective thread should be reactivated (e.g., a program
counter value at which the respective thread is scheduled to be
reactivated). When deactivating a thread in response to a
divergent forward branch instruction, thread state manager 48
may set the resume counter value for the thread to a value
indicative of a target program counter value specified by the
forward branch instruction. When deactivating a thread in
response to a divergent backward branch instruction, thread
state manager 48 may set the resume counter value for the
thread to a value indicative of a program counter value that
corresponds to a next sequential instruction. After setting the
resume counter values for the deactivated threads, thread state
manager 48 may update the MINRC value stored in MINRC
register 42 for the currently executing program module as
described in further detail below.

In some examples, to deactivate a particular thread, thread
state manager 48 may deactivate a respective one of process-
ing elements 14 that corresponds to the particular thread. In
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additional examples, to deactivate a particular thread, thread
state manager 48 may send a signal to a portion of data store
16 that corresponds to the particular thread indicating that
data store 16 should not store any computational results that
correspond to the particular thread. When deactivating
threads, thread state manager 48 may, in some examples, set
an active flag corresponding to the thread to be deactivated to
a value that indicates that the thread has been deactivated.

Thread state manager 48 may be configured to perform a
resume check operation for each instruction cycle to deter-
mine whether any deactivated threads need to be reactivated
for the respective instruction cycle. In some examples, to
perform the resume check operation, thread state manager 48
may compare each of a plurality of resume counter values to
a program counter value associated with a currently pro-
cessed instruction (i.e., the program counter value that is
currently loaded into program counter 28). For example,
thread state manager 48 may determine whether each resume
counter value is equal to the current program counter value
stored in program counter 28. If a resume counter value for a
particular thread equals the current program counter value,
then thread state manager 48 may reactivate the thread. Oth-
erwise, if the resume counter value for a particular thread does
not equal the current program counter value, then thread state
manager 48 may maintain the deactivated status of the thread.

For each thread being reactivated, thread state manager 48
may set a resume counter value corresponding to the respec-
tive thread to a default value that indicates that the thread is
active. For example, the default value may be a largest value
that can be represented in a register for the resume counter
value. After setting the resume counter values for any reacti-
vated threads, thread state manager 48 may update the
MINRC value stored in MINRC register 42 as described in
further detail below.

In some examples, to reactivate a particular thread, thread
state manager 48 may activate a respective one of processing
elements 14 that corresponds to the particular thread. In fur-
ther examples, to reactivate a particular thread, thread state
manager 48 may send a signal to a portion of data store 16 that
corresponds to the particular thread indicating that data store
16 should store computational results that correspond to the
particular thread. When reactivating threads, thread state
manager 48 may, in some examples, set an active flag corre-
sponding to the thread to a value that indicates that the thread
has been activated.

In some examples, the resume check operation may be
initiated in response to loading a program counter value into
program counter 28. The instruction cycle may, in some
examples, be of sufficient length to allow processing elements
14 to perform computational operations for any threads that
have been reactivated as part of the resume check operation
after the resume check operation has completed. In further
examples, execution of the instruction corresponding to the
program counter value stored in program counter 28 may be
delayed until after the resume check operation is complete
and any threads that are scheduled to be reactivated for the
instruction are activated. In such examples, after the resume
check operation is complete, thread state manager 48 may
cause processing elements 14 to begin performing any com-
putational operations associated with the current instruction.

As discussed above, in response to updating one or more
resume counter values when deactivating and/or reactivating
threads, thread state manager 48 may update the MINRC
value stored in MINRC register 42. In general, thread state
manager 48 may determine a candidate set of resume counter
values for use in determining the updated MINRC value, and
set the MINRC value to a value that is indicative of a smallest
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resume counter value from the candidate set of resume
counter values. The candidate set of resume counter values
may be a subset of the entire set of resume counter values,
which includes resume counter value for all threads executing
in processing system 10. A subset may include all or less than
all of the elements of the parent set. The candidate set of
resume counter values may, in some cases, exclude one or
more resume counter values that correspond to threads that
were not active when execution of the currently executing
program module was initiated. By excluding such resume
counter values from consideration while updating the
MINRC, the techniques of this disclosure may ensure that a
subroutine-specific MINRC is updated to values that are
within the program space associated with the subroutine.

In some examples, thread state manager 48 may determine
whether each resume counter value from the entire set of
resume counter values is greater than or equal to the entry
point of the currently executing program module (e.g., the
entry point of the subroutine), and select those resume
counters where the resume counter value is greater than or
equal to the entry point of the currently executing program
module as being the candidate set of resume counter values.
The entry point of the currently executing program module
may be a program counter value that is indicative of a starting
address for the program space that corresponds to the cur-
rently executing program module. In cases where the pro-
gram module is a main program (i.e., a top-level program),
the entry point of the program module may be the starting
address of the top-level program. In cases where the program
module is a subroutine program module, the entry point of the
program module may be the starting address of the subroutine
program module.

In additional examples, thread state manager 48 may main-
tain a set of flags where each flag in the set of flags is indica-
tive of whether a respective thread was active when execution
of a program module (e.g., a subroutine) was initiated. For
example, in response to executing a subroutine call instruc-
tion, thread state manager 48 may set each flag in the set of
flags to a value indicative of whether a thread corresponding
to the respective flag is active when the call instruction is
executed. In such examples, when thread state manager 48
updates the MINRC value, thread state manager 48 may
determine whether each resume counter value from the entire
set of resume counter values corresponds to a respective flag
that indicates that the thread corresponding to the resume
counter value was active when execution of the program
module was initiated, and select those resume counters values
having a flag value that indicates that the thread was active as
being the candidate set of resume counter values.

Subroutine handler 50 is configured to manage the execu-
tion of subroutine control flow statements in processing sys-
tem 10. Subroutine handler 50 may receive information from
decode module 32 indicative of whether the currently pro-
cessed instruction is a call instruction or a return instruction.
A call instruction may refer to an instruction that instructs
processing system 10 to start execution of a subroutine pro-
gram module. A return instruction may refer to an instruction
that instructs processing system 10 to end execution of the
currently executing subroutine module and to resume execut-
ing the caller program module at an instruction in the caller
program that occurs immediately after the call instruction that
initiated the execution of the subroutine program. The caller
program may be either the main program or another subrou-
tine program.

In response to executing a call instruction, subroutine han-
dler 50 may save a state of MINRC register 42 associated with
the caller program. For example, subroutine handler 50 may
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push the MINRC value stored in MINRC register 42 onto a
stack within stack storage structure 52. Pushing the MINRC
value onto the stack may include storing the MINRC value in
the stack of stack storage structure 52. Also in response to
executing a call instruction, subroutine handler 50 may push
areturn address onto a stack within stack storage structure 52.
The return address may be indicative of a program counter
value corresponding to a next sequential instruction after the
call instruction in the caller program.

In some examples, the stack onto which the MINRC value
is pushed may be the same stack as the stack onto which the
return address is pushed. For example, subroutine handler 50
may push a stack frame onto a stack in stack storage structure
52 where the stack frame includes both a MINRC value
corresponding to the call instruction and a return address
corresponding to the call instruction. In additional examples,
subroutine handler 50 may push the MINRC value onto a first
stack in stack storage structure 52, and push the return address
onto a second stack in stack storage structure 52. In such
examples, the first stack may be different than the second
stack.

Also in response to executing a call instruction, subroutine
handler 50 may configure processing system 10 to control
execution of the subroutine based on a MINRC that corre-
sponds to the subroutine. For example, subroutine handler 50
may overwrite the MINRC value stored in MINRC register 42
with an initial value for a MINRC that corresponds to the
subroutine. In other words, subroutine handler 50 may ini-
tialize MINRC register 42 to store a default MINRC value for
execution of the subroutine. The default value may, in some
examples, be a largest value that can be represented in
MINRC register 42.

In response to executing a return instruction, subroutine
handler 50 may restore the saved state of the MINRC that
corresponds to the caller program. For example, subroutine
handler 50 may pop a saved state of the MINRC that corre-
sponds to the caller program from a stack in stack storage
structure 52. Popping the saved state of the MINRC from the
stack may include popping a MINRC value from the stack
that corresponds to the saved state of the MINRC. Popping
the MINRC value from the stack may involve retrieving the
most recently stored MINRC value from stack storage struc-
ture 52. Also in response to executing a return instruction,
subroutine handler 50 may pop a return address off a stack
within stack storage structure 52. The return address may be
indicative of a program counter value corresponding to a next
sequential instruction after the call instruction in the caller
program.

In examples where subroutine handler 50 pushes the
MINRC value onto the same stack as the stack onto with the
return address is pushed, subroutine handler 50 may pop the
MINRC value and return address from the same stack. For
example, subroutine handler 50 may pop a stack frame off of
a stack in stack storage structure 52 where the stack frame
includes both a MINRC value and a return address. In
examples where subroutine handler 50 pushes the MINRC
value and the return address onto different stacks, subroutine
handler 50 may pop the MINRC value off of a first stack in
stack storage structure 52, and pop the return address off of a
second stack in stack storage structure 52.

Subroutine handler 50 may provide the return address that
was popped from stack storage structure 52 to next instruction
generator 44, which may use the return address to select a
program counter value as a next program counter value to
load into program counter 28. The selected program counter
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value may be indicative of the next sequential instruction after
the call instruction in the caller program that initiated execu-
tion of the subroutine.

Also in response to executing a return instruction, subrou-
tine handler 50 may configure processing system 10 to con-
trol execution ofthe caller program based on the saved state of
the MINRC that corresponds to the caller program. For
example, subroutine handler 50 may overwrite the MINRC
value stored in MINRC register 42 with a value correspond-
ing to the saved state of the MINRC value popped from stack
storage structure 52.

Stack storage structure 52 is configured to provide storage
for MINRC values and return addresses. In some examples,
stack storage structure 52 may include a first stack storage
structure that is configured to store return addresses and a
second stack storage structure that is configured to store
MINRC values. In such examples, the first stack storage
structure may be different than the second stack storage struc-
ture. In additional examples, stack storage structure 52 may
include a stack storage structure that is configured to store
stack frames where each stack frame may include a return
address corresponding to a particular call instruction and a
MINRC value corresponding to the particular call instruction.

A stack storage structure may be configured to store and
retrieve data according to a Last In, First Out (LIFO) process-
ing scheme. According to a LIFO processing scheme, when-
ever the stack storage structure receives a request (e.g., a pop
request) to retrieve a data unit (e.g., a stack frame, a return
address, a MINRC value, etc.) from the stack storage struc-
ture, the stack storage structure may return the most recent
data unit that was stored on the stack (e.g., the most recent
data unit to be pushed onto the stack). A stack storage struc-
ture may be configured to process push commands and pop
commands, which specify whether to store or retrieve data
units, but do not necessarily specify a particular data address
to which to store the data units or from which to retrieve the
data units.

In some examples, stack storage structure 52 may be a
hardware-based stack storage structure 52. For example,
stack storage structure 52 may be implemented as one or more
registers and/or shift registers. Although stack storage struc-
ture 52 is shown in FIG. 3 as being implemented on the same
processor as control flow module 34, in other examples, all or
apart of stack storage structure 52 may be implemented in an
on-chip cache or in an external memory device. For example,
stack storage structure 52 may include storage space for a
finite number of stack storage slots. If an overflow condition
occurs in such an example, subroutine handler 50 may utilize
an on-chip cache or an external memory to store additional
data over and above the finite number of stack storage slots
included in stack storage structure 52.

FIG. 4 is a conceptual diagram illustrating an example
control flow for the subroutine execution techniques of this
disclosure. As shown in FIG. 4, a caller program space 60 is
associated with a caller program module, and a callee pro-
gram space 62 is associated with a subroutine program mod-
ule. The caller program module may be either a main program
or a caller subroutine. Caller program space 60 includes a
sequence of program instructions starting with a starting
instruction 64 and ending with an ending instruction 66.
Between starting instruction 64 and ending instruction 66 in
the sequence of program instructions is a call instruction 68,
which directs processing system 10 to pass control from the
caller program module to the callee subroutine module. The
instruction immediately after call instruction 68 in the
sequence of program instructions is instruction 70, which
may be any type of instruction. Callee program space 62
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includes a sequence of program instructions starting with a
starting instruction 72 and ending with a return instruction 74.
Return instruction 74 directs processing system 10 to pass
control from the callee subroutine module back to the caller
program module. Starting instruction 64 may be referred to
herein as the entry point of the caller program module, and
starting instruction 72 may be referred to herein as the entry
point of the callee subroutine module.

The caller program module begins executing instructions
at starting instruction 64 and continues executing instructions
in caller program space 60 until call instruction 68 is encoun-
tered. Call instruction 68 directs processing system 10 to pass
control from the caller program module to the callee subrou-
tine. Call instruction 68 includes a value that is indicative of
a program counter value that corresponds to starting instruc-
tion 72. In response to executing call instruction 68, the return
address, which corresponds to instruction 70 (i.e., the next
sequential instruction after call instruction 68 in the caller
program), is pushed onto (i.e., stored in) a call stack. Also in
response to executing call instruction 68, a MINRC value
corresponding to the caller program module is pushed onto a
stack. Also in response to executing call instruction 68, a
MINRC corresponding to the callee subroutine program
module is initialized to a default value. Also in response to
executing call instruction 68, the program counter for pro-
cessing system 10 is loaded with a program counter value that
corresponds to starting instruction 72 ofthe callee subroutine.
The program counter value corresponding to starting instruc-
tion 72 may be specified by a value contained in call instruc-
tion 68.

The callee subroutine module begins executing instruc-
tions at a starting instruction 72 and continues executing
instructions in callee program space 62 until return instruc-
tion 74 is encountered. In response to executing return
instruction 74, the return address is popped off of (i.e.,
retrieved from) the call stack and loaded into the program
counter. Again, the return address corresponds to instruction
70 in caller program space 60. Also in response to executing
return instruction 74, a MINRC value corresponding to the
caller program module is popped off the stack. The caller
program module resumes executing instructions at instruc-
tion 70 until ending instruction 66 is encountered which indi-
cates the end of the program.

FIG. 5is aconceptual diagram illustrating another example
control flow for the subroutine execution techniques of this
disclosure. A caller program module 76 and a callee program
module 78 are shown in FIG. 5. Caller program module 76
and callee program module 78 may be a part of the same
program, and callee program module 78 may be a subroutine
of the program. Caller program module 76 may be a main
program module or a subroutine program module. Caller
program module 76 includes a call instruction 80 and a next
instruction 82 immediately after call instruction 80. Prior to
the execution of each of call instruction 80 and next instruc-
tion 82, resume check operations 84 and 86, respectively, are
performed. During execution, call instruction 80 may transfer
control of the processing system to callee program module 78
for execution of subsequent instructions. After the last
instruction is executed in callee program module 78, control
may be passed back to caller program module 76 at a point
prior to resume check operation 86 for next instruction 82.

Points A and B in FIG. 5 depict two different points in time
during the execution of the program. Point A defines a point in
time that is during the instruction cycle of call instruction 80,
after the completion of resume check operation 84 for call
instruction 80, and prior to the transfer of control from caller
program module 76 to callee program module 78. Point B
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defines a point in time that is during the instruction cycle of
next instruction 82, prior to the initiation of resume check
operation 86 for next instruction 82, and after the transfer of
control back from callee program module 78 to caller pro-
gram module 76.

The threads that are active at Point A define the set of
threads that are active immediately prior to initiating execu-
tion of callee program module. Similarly, the threads that are
active at Point B define the set of threads that are active
immediately after finishing execution of callee program mod-
ule 78.

Subroutine convergence refers to the property that the
thread state for all of the threads in processing system 10
immediately prior to initiating execution of a subroutine is the
same as the thread state immediately after finishing execution
of the subroutine. That is, if a thread is active at point A in
FIG. 5, then subroutine convergence requires that the thread
must also be active at point B in FIG. 5. Similarly, if a thread
is inactive at point A in FIG. 5, then subroutine convergence
requires that the thread must also be inactive at point B in FIG.
5. The techniques of this disclosure may, in some examples,
be able to guarantee subroutine convergence, thereby ensur-
ing stable operation of subroutine statements in processing
system 10.

In general, to ensure proper operation in a subroutine envi-
ronment, the control flow between the caller and the callee
must be passed through the call and return instructions. In
other words, the caller cannot branch or jump into the callee
outside of a call instruction, and the callee cannot branch or
jump into the caller outside of a return instruction. This is
because the call and return instructions do not merely modify
the program counter, but also modify the state of the system,
e.g., by pushing and popping return addresses and/or other
variables onto the stack. If dynamic caller-callee branching
were permitted outside of call and return instructions, the
system state would not be guaranteed to be correct and it is
possible that the program could prematurely terminate with-
out all of the threads completing execution. The program
module-specific MINRC techniques of this disclosure, how-
ever, prevent such dynamic caller-callee branches from
occurring outside of call and return instructions as described
below with respect to FIG. 6.

FIG. 6 is a conceptual diagram illustrating example pro-
gram space arrangements 88, 90 in accordance with the tech-
niques of this disclosure. Each of program space arrange-
ments 88, 90 includes a caller program and a callee program.
As shown in FIG. 6, the program spaces for the caller and the
callee do not overlap in the program memory. Therefore, the
caller program space is either above or below the callee pro-
gram space as shown in FIG. 3. Consider the case on the
left-hand side where the caller program space is above the
callee program space. FIG. 6 illustrates three different
instructions (A, B, C) in the caller program space. Instruction
B occurs after Instruction A in the sequence of instructions for
the caller program, and Instruction C occurs after Instruction
B in the sequence of instructions for the caller program.
Assume that, at Instruction A, the caller program deactivates
one or more threads in response to the execution of a divergent
branch instruction, and assume that the MINRC for the deac-
tivated threads points to Instruction C. Prior to executing
Instruction C, the caller program executes Instruction B,
which is a call instruction. In response to executing Instruc-
tion B, control is transferred to the callee subroutine.

Consider the case where the same MINRC is used for
controlling execution of the caller program and for control-
ling execution of the callee subroutine. In such a case, if the
callee subroutine includes any forward jump instructions or
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forward branch instructions that are uniformly satisfied, such
instructions are configured to jump to the lesser of the
MINRC and the target instruction. In this case, because the
MINRC points to an instruction in the caller program space
(i.e., Instruction C), the MINRC is always less than any target
program instruction in the callee program space. Therefore, a
forward jump or forward branch instruction that is uniformly
satisfied would cause the callee program to branch into the
caller program space outside of a return instruction. As dis-
cussed above, such branching would not ensure proper opera-
tion of the system.

The program-module specific MINRC techniques of this
disclosure, however, prevent caller-callee branching from
occurring outside of call and return instructions. For example,
a subroutine-specific MINRC for the callee program would
not store a value that points to Instruction C in this example.
Instead, when execution of the subroutine begins, a new sub-
routine-specific MINRC is initialized which is used for con-
trolling execution of the subroutine. The subroutine-specific
MINRC is indicative of a smallest resume counter value of all
threads that are active when execution of the subroutine is
initiated. Because the threads that have resume counter values
pointing to Instruction C were already deactivated when
execution of the subroutine began, such resume counter val-
ues would not affect the subroutine-specific MINRC. In this
way, the techniques of this disclosure ensure that the control
flow between the caller and the callee is passed through the
call and return instructions

FIGS. 7-18 are flow diagrams illustrating example instruc-
tion processing techniques that utilize the subroutine execu-
tion techniques of this disclosure. The example techniques
shown in FIGS. 7-18 may be implemented, in some examples,
in control flow unit 34 of either of FIGS. 2 and 3 and/or within
processing system 10 of any of FIGS. 1-3. For ease of expla-
nation, the techniques will be described with respect to con-
trol flow unit 34 shown in FIG. 2, but it should be understood
that the techniques may be performed in other systems with
the same or different components in the same or a different
configuration.

FIG. 7 is a flow diagram illustrating an example technique
for determining a program counter value for a next instruction
to be executed according to this disclosure. Control flow
module 34 receives an instruction and/or control information
associated with an instruction (100). Control flow module 34
determines whether the instruction is a control flow instruc-
tion (102). In response to determining that the instruction is
not a control flow instruction, control flow module 34 incre-
ments program counter 28 (104). For example, control flow
module 34 may select a program counter value to load into
program counter 28 that is indicative of a next sequential
instruction.

On the other hand, in response to determining that the
instruction is a control flow instruction, control flow module
34 determines whether the control flow instruction is a sub-
routine instruction (106). Example subroutine instructions
may include a call instruction and a return instruction. In
response to determining that the instruction is subroutine
instruction, control flow module 34 determines whether the
instruction is a call instruction (108). In response to determin-
ing that the instruction is a call instruction, control flow mod-
ule 34 processes the call instruction according to the tech-
niques described in FIG. 8 (110). On the other hand, in
response to determining that the instruction is a not call
instruction (i.e., determining that the instruction is a return
instruction), control flow module 34 processes the return
instruction according to the techniques described in FIG. 9
(112).
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Returning to decision box 106, in response to determining
that the instruction is not a subroutine instruction, control
flow module 34 determines whether the control flow instruc-
tion is a jump instruction (114). The jump instruction may be
alternatively referred to as an unconditional branch instruc-
tion. In response to determining that the control flow instruc-
tion is a jump instruction, control flow module 34 processes
the jump instruction according to the techniques described in
FIG. 10 (116). Otherwise, in response to determining that the
control flow instruction is a not a jump instruction (i.e., that
the control flow instruction is a conditional branch instruc-
tion), control flow module 34 processes the conditional
branch instruction according to the techniques described in
FIGS. 12 and 13 (118).

FIG. 8 is a flow diagram illustrating an example technique
for processing a call instruction in accordance with the pro-
gram module-specific MINRC execution techniques of this
disclosure. Control flow module 34 pushes a value stored in a
MINRC register for a MINRC associated with the caller
program onto a MINRC stack (120). Control flow module 34
initializes the MINRC register to an initial value correspond-
ing to the subroutine program module (122). In other words,
control flow module 34 may overwrite the value stored in the
MINRC register with an initial value for a MINRC associated
with the callee program. Control flow module 34 pushes a
return address onto a call stack (124). The return address may
be indicative of a next sequential instruction in the caller
program that occurs immediately after the call instruction.
Control flow module 34 sets the program counter to a value
indicative of the target instruction (i.e., a target program
counter value) (126). The target instruction and/or the target
program counter may be specified in the call instruction.

FIG. 9 is a flow diagram illustrating an example technique
for processing a return instruction in accordance with the
program module-specific MINRC execution techniques of
this disclosure. Control flow module 34 determines whether
the call stack is empty (128). In response to determining that
the call stack is empty, control flow module 34 terminates the
process (130). If the call stack is empty, this may mean that
the return instruction is the ending instruction of a top-level
program (i.e., a main program). In response to determining
that the call stack is not empty, control flow module 34 pops
a MINRC value off of the MINRC stack (132) and sets the
MINRC register equal to the popped MINRC value (134).
Control flow module 34 pops a return address oft of the call
stack (136) and sets the program counter register equal to the
popped return address (138). The return address may be
indicative of an instruction that occurs immediately after the
call instruction that initiated execution of the subroutine
which includes the return instruction currently being
executed.

FIG.10is a flow diagram illustrating an example technique
for processing a jump instruction in accordance with this
disclosure. Control flow module 34 determines whether the
jump instruction is a backward jump instruction (140). In
some examples, control flow module 34 may determine
whether the jump instruction is a backward jump instruction
by determining whether the target program counter value for
the jump instruction is greater than the program counter value
that identifies the jump instruction. In further examples, the
target program counter value for the jump instruction may be
a relative target program counter value, which may indicate
the difference between the target instruction and the program
counter value which identifies the jump instruction. In such
examples, control flow module 34 may determine whether the
jump instruction is a backward jump instruction by determin-
ing whether the relative target program counter value for the
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jump instruction is less than zero. In additional examples, the
forward and backward jump instructions may include difter-
ent operational codes, i.e., opcodes. In such examples, control
flow module 34 may determine whether the jump instruction
is a backward jump instruction based on the opcode of the
instruction.

If control flow module 34 determines that the jump instruc-
tion is a backward jump instruction, then control flow module
34 determines whether at least one thread is active (142). If
control flow module 34 determines that no threads are active,
then control flow module 34 increments program counter 28
(144). For example, control flow module 34 may select a
program counter value to load into program counter 28 that is
indicative of a next sequential instruction. On the other hand,
if control flow module 34 determines that at least one thread
is active, then control flow module 34 jumps to the target
instruction (146). For example, control flow module 34 may
select a target program counter value indicative of a target
instruction identified by the jump instruction to load into
program counter 28.

If control flow module 34 determines that the jump instruc-
tion is not a backward jump instruction (i.e., that the jump
instruction is a forward jump instruction), then control flow
module 34 determines whether target program counter value
is less than or equal to the MINRC value (148). If control flow
module 34 determines that that the target program counter
value is not less than or equal to the MINRC value, then
control flow module 34 deactivates all active threads (150). In
some examples, control flow module 34 may use the tech-
nique illustrated in FIG. 11 to deactivate all of the active
threads. In further examples, deactivating the active threads
may include, for each thread being deactivated, deactivating
and/or disabling a processing element 14 that is assigned to
process instructions for the respective thread. Control flow
module 34 proceeds to jump to the instruction identified by
the MINRC value (152). For example, control flow module 34
may select the MINRC value as a value to load into program
counter 28 in response to determining that the target program
counter value is not less than or equal to the MINRC value. On
the other hand, if control flow module 34 determines that the
target program counter value is less than or equal to the
MINRC value, then control flow module 34 jumps to the
target instruction (154). For example, control flow module 34
may select a target program counter value indicative of a
target instruction identified by the jump instruction as a value
to load into program counter 28 in response to determining
that the target program counter value is less than or equal to
the MINRC value.

Inthis example, control flow module 34 selects the MINRC
value to load into program counter 28 when the MINRC is
less than the target program counter value in order to ensure
that divergent threads that are scheduled to process instruc-
tions at lower-valued addresses execute prior to threads that
are scheduled to process instructions at higher-valued
addresses (i.e., a “least-valued address first” thread process-
ing order).

FIG. 11 is aflow diagram illustrating an example technique
for deactivating all threads according to this disclosure. In
some examples, the technique illustrated in FIG. 11 may be
used to implement process box 150 illustrated in FIG. 10 or
process box 198 illustrated in FIG. 13. Control flow module
34 selects a thread (156). Control flow module 34 determines
whether the selected thread is active (158). If control flow
module 34 determines that the selected thread is active, then
control flow module 34 resets the active flag associated with
the thread to a value of false (160), sets the resume counter
associated with the thread to a target program counter value
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indicative of the target instruction identified by the jump or
branch instruction (162), and proceeds to decision box 164.
On the other hand, if control flow module 34 determines that
the selected thread is not active, then control flow module 34
proceeds to decision box 164 without resetting the active flag
for the thread and without setting the resume counter for the
thread. In either case, control flow module 34 determines
whether there are any more threads to process (164). If control
flow module 34 determines that there are more threads to
process, then control flow module 34 returns to process box
156 to process another thread.

Otherwise, if control flow module 34 determines that there
are not any more active threads to process, then control flow
module 34 updates the MINRC (166). For example, control
flow module 34 may determine a smallest resume counter
value from the set of resume counter values that corresponds
to threads that are active when the execution of currently
executing program module is initiated, and set the MINRC to
a value indicative of the smallest resume counter value. In
some examples, control flow module 34 may use either of the
techniques illustrated in FIGS. 17 and 18 to update the
MINRC.

After updating the MINRC value, control flow module 34
ends the deactivation process and returns to the calling pro-
cess, e.g., process box 152 in FIG. 10 or process box 200 in
FIG. 13. Although FIG. 11 illustrates an example technique
that deactivates multiple threads by sequentially deactivating
each of the threads, in other examples, the multiple threads
may be deactivated partially or fully in parallel, e.g., by using
a strobe or common control line.

FIGS. 12 and 13 are flow diagrams illustrating an example
technique for processing a branch instruction in accordance
with this disclosure. Control flow module 34 determines
whether the branch instruction is a backward branch instruc-
tion (168). The manner in which control flow module 34 may
determine whether the branch instruction is a backward
branch instruction may be substantially similar to that which
was described above with respect to FIG. 10 for determining
whether a jump instruction is a backward jump instruction,
and in the interest of brevity, will not be described in further
detail.

If control flow module 34 determines that the branch
instruction is a backward branch instruction, then control
flow module 34 determines whether at least one thread is
active (170). If control flow module 34 determines that no
threads are active, then control flow module 34 increments
program counter 28 (172). For example, control flow module
34 may select a program counter value to load into program
counter 28 that is indicative of a next sequential instruction. In
this example, control flow module 34 may sequentially cycle
through the program counter values until a lowest-valued
resume counter is detected in order to ensure that divergent
threads that are scheduled to process instructions at lower-
valued addresses execute prior to threads that are scheduled to
process instructions at higher-valued addresses.

On the other hand, if control flow module 34 determines
that at least one thread is active, then control flow module 34
determines whether the divergence condition is uniform (i.e.,
whether the branching condition is uniformly satisfied or
uniformly unsatisfied) (174). If control flow module 34 deter-
mines that the divergence condition is not uniform (i.e., the
branch is divergent), then control flow module 34 may deac-
tivate any active threads that do not satisfy the branch condi-
tion (176). In some examples, control flow module 34 may
use the technique illustrated in FIG. 14 to deactivate the active
threads that do not satisfy the branch condition. In further
examples, deactivating the active threads that do not satisfy
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the branch condition may include, for each thread being deac-
tivated, deactivating and/or disabling a processing element 14
that is assigned to process instructions for the respective
thread. Control flow module 34 proceeds to jump to the target
instruction (178). For example, control flow module 34 may
select a target program counter value indicative of a target
instruction identified by the branch instruction to load into
program counter 28.

Inthis example, control flow module 34 deactivates threads
that do not satisfy the branch condition in order to ensure that
divergent threads that are scheduled to process instructions at
lower-valued addresses execute prior to threads that are
scheduled to process instructions at higher-valued addresses
(i.e., a “least-valued address first” thread processing order).
More specifically, the active threads that do not satisfy the
branch condition are scheduled to execute the next sequential
instruction, and the program counter value for the next
sequential instruction is greater than the target program
counter value associated with the target instruction. Thus, in
a backward branch instruction, the active threads that do
satisfy the branch condition are scheduled to execute prior to
the threads that do not satisfy the branch condition.

Returning to decision box 174, if control flow module 34
determines that the divergence condition is uniform, then
control flow module 34 determines whether the branching
condition is satisfied (180). If control flow module 34 deter-
mines that the branching condition is not satisfied, then con-
trol flow module 34 increments program counter 28 (182).
For example, control flow module 34 may select a program
counter value to load into program counter 28 that is indica-
tive of a next sequential instruction. In this case, control flow
module 34 increments program counter 28 because all active
threads are scheduled to execute the next sequential instruc-
tion due to the uniformly unsatisfied branch condition. On the
other hand, if control flow module 34 determines that the
branching condition is satisfied, then control flow module 34
jumps to the target instruction (184). For example, control
flow module 34 may select a target program counter value
indicative of a target instruction identified by the branch
instruction to load into program counter 28. In this case,
control flow module 34 jumps to the target instruction
because all active threads are scheduled to execute the target
instruction due to the uniformly satisfied branch condition.

Returning to decision box 168, if control flow module 34
determines that the branch instruction is not a backward
branch instruction (i.e., that the branch instruction is a for-
ward branch instruction), then control flow module 34 pro-
ceeds to decision box 186 in FIG. 13 where control flow
module 34 determines whether the divergence condition is
uniform (i.e., whether the branching condition is uniformly
satisfied or uniformly unsatisfied) (186). If control flow mod-
ule 34 determines that the divergence condition is not uniform
(i.e., that the branching is divergent), then control flow mod-
ule 34 may deactivate any active threads that satisfy the
branch condition (188). In some examples, control flow mod-
ule 34 may use the technique illustrated in FIG. 15 to deacti-
vate the active threads that satisfy the branch condition. In
further examples, deactivating the active threads that satisfy
the branch condition may include, for each thread being deac-
tivated, deactivating and/or disabling a processing element 14
that is assigned to process instructions for the respective
thread. Control flow module 34 increments program counter
28 (190).

Inthis example, control flow module 34 deactivates threads
that satisty the branch condition in order to ensure that diver-
gent threads that are scheduled to process instructions at
lower-valued addresses execute prior to threads that are
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scheduled to process instructions at higher-valued addresses
(i.e., a “least-valued address first” thread processing order).
More specifically, the active threads that do not satisfy the
branch condition are scheduled to execute the next sequential
instruction, and the program counter value for the next
sequential instruction is less than the target program counter
value associated with the target instruction. Thus, in a forward
branch instruction, the active threads that do not satisfy the
branch condition are scheduled to execute prior to the threads
that satisfy the branch condition.

Returning to decision box 186, if control flow module 34
determines that the divergence condition is uniform, then
control flow module 34 determines whether the branching
condition is satisfied (192). If control flow module 34 deter-
mines that the branching condition is not satisfied, then con-
trol flow module 34 increments program counter 28 (194).
For example, control flow module 34 may select a program
counter value to load into program counter 28 that is indica-
tive of a next sequential instruction. In this case, control flow
module 34 increments program counter 28 because all active
threads are scheduled to execute the next sequential instruc-
tion due to the uniformly unsatisfied branch condition.

On the other hand, if control flow module 34 determines
that the branching condition is satisfied, then control flow
module 34 determines whether target program counter value
is less than or equal to the MINRC value (196). If control flow
module 34 determines that that the target program counter
value is not less than or equal to the MINRC value, then
control flow module 34 deactivates all active threads (198). In
some examples, control flow module 34 may use the tech-
nique illustrated in FIG. 11 to deactivate all of the active
threads. In further examples, deactivating the active threads
may include, for each thread being deactivated, deactivating
and/or disabling a processing element 14 that is assigned to
process instructions for the respective thread. Control flow
module 34 proceeds to jump to the instruction identified by
the MINRC value (200). For example, control flow module 34
may select the MINRC value as a value to load into program
counter 28 in response to determining that the target program
counter value is not less than or equal to the MINRC value. On
the other hand, if control flow module 34 determines that the
target program counter value is less than or equal to the
MINRC value, then control flow module 34 jumps to the
target instruction (202). For example, control flow module 34
may select a target program counter value indicative of a
target instruction identified by the branch instruction as a
value to load into program counter 28 in response to deter-
mining that the target program counter value is less than or
equal to the MINRC value.

Inthis example, control flow module 34 selects the MINRC
value to load into program counter 28 when the MINRC is
less than the target program counter value in order to ensure
that divergent threads that are scheduled to process instruc-
tions at lower-valued addresses execute prior to threads that
are scheduled to process instructions at higher-valued
addresses (i.e., a “least-valued address first” thread process-
ing order).

FIG. 14 is a flow diagram illustrating an example technique
for deactivating active threads that do not satisty a branch
condition according to this disclosure. In some examples, the
technique illustrated in FIG. 14 may be used to implement
process box 176 illustrated in FIG. 12. Control flow module
34 selects an active thread (204). Control flow module 34
determines whether the branch condition is satisfied for the
selected thread (206). If control flow module 34 determines
that the branch condition is not satisfied for the selected
thread, then control flow module 34 resets the active flag
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associated with the thread to a value of false (208), sets the
resume counter associated with the thread to a program
counter value indicative of the next sequential instruction
(e.g., “PC+17) (210), and proceeds to decision box 212. In
this case, the resume counter is set to a value indicative of the
next sequential instruction because the branch condition was
unsatisfied for the thread.

On the other hand, if control flow module 34 determines
that the branch condition is satisfied for the selected thread,
then control flow module 34 proceeds to decision box 212
without resetting the active flag for the thread and without
setting the resume counter for the thread. In either case,
control flow module 34 determines whether there are any
more active threads to process (212). If control flow module
34 determines that there are more active threads to process,
then control flow module 34 returns to process box 204 to
process another active thread. Otherwise, if control flow mod-
ule 34 determines that there are not any more active threads to
process, then control flow module 34 updates the MINRC
(214). Control flow module 34 may update the MINRC in a
manner similar to that which is described above with respect
to process box 166 in FIG. 11. After updating the MINRC,
control flow module 34 ends the deactivation process and
returns to the calling process, e.g., process box 178 in FIG. 12.

FIG. 15 is aflow diagram illustrating an example technique
for deactivating active threads that satisfy a branch condition
according to this disclosure. In some examples, the technique
illustrated in FIG. 15 may be used to implement process box
188 illustrated in FIG. 13. Control flow module 34 selects an
active thread (216). Control flow module 34 determines
whether the branch condition is satisfied for the selected
thread (218). If control flow module 34 determines that the
branch condition is satisfied for the selected thread, then
control flow module 34 resets the active flag associated with
the thread to a value of false (220), sets the resume counter
associated with the thread to a target program counter value
indicative of the target instruction identified by the branch
instruction (222), and proceeds to decision box 224. In this
case, the resume counter is set to a value indicative of the
target instruction because the branch condition was satisfied
for the thread.

On the other hand, if control flow module 34 determines
that the branch condition is not satisfied for the selected
thread, then control flow module 34 proceeds to decision box
224 without resetting the active flag for the thread and without
setting the resume counter for the thread. In either case,
control flow module 34 determines whether there are any
more active threads to process (224). If control flow module
34 determines that there are more active threads to process,
then control flow module 34 returns to process box 216 to
process another active thread. Otherwise, if control flow mod-
ule 34 determines that there are not any more active threads to
process, then control flow module 34 updates the MINRC
(226). Control flow module 34 may update the MINRC in a
manner similar to that which is described above with respect
to process box 166 in FIG. 11. After updating the MINRC,
control flow module 34 ends the deactivation process and
returns to the calling process, e.g., process box 190 in FIG. 13.

FIG. 16 is a flow diagram illustrating an example resume
check technique for reactivating threads in accordance with
this disclosure. In some examples, the technique illustrated in
FIG. 16 may be performed each time a new program counter
value is loaded into program counter 28. Control flow module
34 selects an inactive thread (228). Control flow module 34
determines whether the resume counter value for the inactive
thread is equal to the program counter value (230). If control
flow module 34 determines that the resume counter value for
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the inactive thread is equal to the program counter value, then
control flow module 34 sets the active flag associated with the
thread to a value of true (232), sets the resume counter asso-
ciated with the thread to a maximum value (234), and pro-
ceeds to decision box 236. The maximum value, in some
examples, may be a value that is the largest value that can be
represented in the storage slot or register for the resume
counter.

On the other hand, if control flow module 34 determines
that the resume counter value for the inactive thread is not
equal to the program counter value, then control flow module
34 proceeds to decision box 236 without setting the active flag
for the thread and without setting the resume counter for the
thread. In either case, control flow module 34 determines
whether there are any more inactive threads to process (236).
If control flow module 34 determines that there are more
inactive threads to process, then control flow module 34
returns to process box 228 to process another inactive thread.
Otherwise, if control flow module 34 determines that there
are not any more inactive threads to process, then control flow
module 34 updates the MINRC (238). Control flow module
34 may update the MINRC in a manner similar to that which
is described above with respect to process box 166 in FIG. 11.
After updating the MINRC value, control flow module 34
ends the resume check process.

FIG. 17 is a flow diagram illustrating an example technique
for updating a MINRC in accordance with this disclosure. In
some examples, the technique illustrated in FIG. 17 may be
used to implement process box 166 illustrated in FIG. 11,
process box 214 illustrated in FIG. 14, process box 226 illus-
trated in FIG. 15 and/or process box 238 illustrated in FIG.
16. In general, the technique illustrated in FIG. 17 may be
performed in response to updating one or more resume
counters, which may occur in response to activating one or
more threads as part of a resume check operation and/or in
response to deactivating one or more threads in response to a
divergent branch condition.

Control flow module 34 selects an inactive thread (240).
Control flow module 34 determines whether the resume
counter value for the inactive thread is less than the MINRC
value (242). If control flow module 34 determines that the
resume counter value for the inactive thread is less than the
MINRC value, then control flow module 34 determines
whether the resume counter value for the inactive thread is
greater than or equal to an entry point for the currently execut-
ing program module (244). The entry point for the currently
executing program module may refer to a program counter
value that corresponds to a starting address of the program
module that is currently being executed. If control flow mod-
ule 34 determines that the resume counter value for the inac-
tive thread is greater than or equal to an entry point for the
currently executing program module, then control flow mod-
ule 34 sets the MINRC equal to the resume counter value for
the inactive thread (246), and proceeds to decision box 248.

Returning to decision box 242, if control flow module 34
determines that the resume counter value for the inactive
thread is not less than the MINRC value (i.e., that the resume
counter value for the inactive thread is greater than or equal to
the MINRC value), then control flow module 34 may proceed
to decision box 248 without setting the MINRC equal to the
resume counter value for the inactive thread. Returning to
decision box 244, if control flow module 34 determines that
the resume counter value for the inactive thread is not greater
than or equal to an entry point for the currently executing
program module (i.e., the resume counter is less than the entry
point), then control flow module 34 may proceed to decision
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box 248 without setting the MINRC equal to the resume
counter value for the inactive thread.

In any case, control flow module 34 determines whether
there are any more inactive threads to process (248). If control
flow module 34 determines that there are more inactive
threads to process, then control flow module 34 returns to
process box 240 to process another inactive thread. Other-
wise, if control flow module 34 determines that there are not
any more inactive threads to process, then control flow mod-
ule 34 ends the update MINRC process (250).

It should be noted that the flow diagram shown in FIG. 17
is just one example of a technique for updating a MINRC
based on a comparison of resume counter values to entry
points of a currently processed programming module. In
additional examples, the order of decision boxes 242 and 244
may be switched or decision boxes 242 and 244 may be
performed contemporaneously.

FIG. 18 is a flow diagram illustrating another example
technique for updating a MINRC in accordance with this
disclosure. In some examples, the technique illustrated in
FIG. 18 may be used to implement process box 166 illustrated
in FIG. 11, process box 214 illustrated in FIG. 14, process box
226 illustrated in FIG. 15 and/or process box 238 illustrated in
FIG. 16. In general, the technique illustrated in FIG. 18 may
be performed in response to updating one or more resume
counters, which may occur in response to activating one or
more threads as part of a resume check operation and/or in
response to deactivating one or more threads in response to a
divergent branch condition.

Control flow module 34 selects an inactive thread (252).
Control flow module 34 determines whether the resume
counter value for the inactive thread is less than the MINRC
value (254). If control flow module 34 determines that the
resume counter value for the inactive thread is less than the
MINRC value, then control flow module 34 determines
whether the inactive thread was originally active when execu-
tion of the currently executing program module was initiated
(256). For example, control flow module 34 may maintain a
set of flags where each flag stores a value that is indicative of
whether a thread corresponding to the respective flag was
active when execution of the currently executing program
module was initiated. In such an example, control flow mod-
ule 34 may determine whether the flag value corresponding to
the inactive thread that is currently being processed indicates
that the thread was active when execution of the currently
executing program module was initiated. If control flow mod-
ule 34 determines that the inactive thread was originally
active when execution of the currently executing program
module was initiated, then control flow module 34 sets the
MINRC equal to the resume counter value for the inactive
thread (258), and proceeds to decision box 260.

Returning to decision box 254, if control flow module 34
determines that the resume counter value for the inactive
thread is not less than the MINRC value (i.e., that the resume
counter value for the inactive thread is greater than or equal to
the MINRC value), then control flow module 34 may proceed
to decision box 260 without setting the MINRC equal to the
resume counter value for the inactive thread. Returning to
decision box 256, if control flow module 34 determines that
the inactive thread was not originally active when execution
of'the currently executing program module was initiated, then
control flow module 34 may proceed to decision box 260
without setting the MINRC equal to the resume counter value
for the inactive thread.

In any case, control flow module 34 determines whether
there are any more inactive threads to process (260). If control
flow module 34 determines that there are more inactive
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threads to process, then control flow module 34 returns to
process box 252 to process another inactive thread. Other-
wise, if control flow module 34 determines that there are not
any more inactive threads to process, then control flow mod-
ule 34 ends the update MINRC process (262).

It should be noted that the flow diagram shown in FIG. 18
is just one example of a technique for updating a MINRC
based on a comparison of resume counter values to entry
points of a currently processed programming module. In
additional examples, the order of decision boxes 254 and 256
may be switched or decision boxes 254 and 256 may be
performed contemporaneously.

FIG. 19 is a block diagram illustrating an example control
flow module 34 that may be used to implement the subroutine
execution techniques of this disclosure. In some examples,
the example control flow module 34 illustrated in FIG. 19
may be used to implement the techniques described above
with respect to FIGS. 7-18. Control flow module 34 includes
thread registers 302, active flags 304A-304D (collectively
“active flags 304”), resume counters 306A-306D (collec-
tively “resume counters 306), a minimum resume counter
(MINRC) 308, a resume check module 310, a branch condi-
tion evaluator 312, an event information generator 314, a
program state register 316, a state transition block 318, a
thread deactivator 320, a subroutine handler 322, a call stack
324, a MINRC stack 326, and a next instruction block 328.

In some examples, the example control flow module 34
illustrated in FIG. 19 may be used to implement the example
control flow module 34 shown in FIG. 3. In such examples,
resume counters 306 shown in FIG. 19 may correspond to
resume counters 46 shown in FIG. 3, MINRC 308 shown in
FIG. 19 may correspond to MINRC register 42 shown in FIG.
3, branch condition evaluator 312 shown in FIG. 19 may
correspond to branch condition evaluator 40 shown in FIG. 3,
and subroutine handler 322 shown in FIG. 19 may correspond
to subroutine handler 50 shown in FIG. 3. Accordingly, in the
interest of brevity and to avoid redundancy, the construction
and operation of these shared components is not described in
further detail. Moreover, event information generator 314,
program state register 316, state transition block 318 and next
instruction block 328 may be configured to implement the
functionality of next instruction generator 44 shown in FIG.
3. Similarly, resume check module 310, event information
generator 314, program state register 316, state transition
block 318, and thread deactivator 320 may be configured to
implement the functionality of thread state manager 48 shown
in FIG. 3. In addition, call stack 324 and MINRC stack 326
may correspond to stack storage structure 52 shown in FIG. 3.

Thread registers 302 are configured to store the thread state
for each of the threads executing in processing system 10. As
shown in FIG. 19, thread registers 302 include active flags
304 and resume counters 306. Each of active flags 304 stores
an active flag indicative of whether the status of a thread
corresponding to the respective active flag 304A-304D is
active. Each of resume counters 306 stores a resume counter
value for a respective thread. In some examples, each thread
may be assigned to a respective one of processing elements
14. In such examples, each of active flags 304 and resume
counters 306 may correspond to a respective one of process-
ing elements 14. For example, active flag 304A and resume
counter 306 A may each correspond to processing element
14A illustrated in FIG. 1, and active flag 304B and resume
counter 306B may each correspond to processing element
14B illustrated in FIG. 1. Although the example control flow
module 34 illustrated in FIG. 19 illustrates a system having
four active flags 304 and four resume counters 306, in other
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examples, control flow module 34 may have the same or
different numbers of active flags 304 and resume counters
306.

Thread registers 302 also includes a MINRC 308. MINRC
308 is configured to store a value indicative of a smallest value
from the set of resume counters 306 that were active when
execution of the currently executing program module was
initiated.

Resume check module 310 is configured to perform a
resume check operation in response to program counter 28
being loaded with a new program counter value. In some
examples, resume check module 310 may perform the resume
check operation in accordance with the resume check tech-
niques illustrated in FIG. 16. Resume check module 310 may
receive the current program counter value from program
counter 28 and the current active flags 304 and resume
counter values 306 from thread registers 302 to perform the
resume check operation. Resume check module 310 may also
modify active flags 304, resume counters 306 and MINRC
308 as part of the resume check operation. In addition, resume
check module 310 may update program state register 316
based on the outcome of the resume check operation.

In some examples, after completing the resume check
operation, resume check module 310 may send a signal to one
or both of fetch module 30 and decode module 32 indicating
that the resume check operation has completed. When fetch
module 30 receives the signal that the resume check operation
has completed, fetch module 30 may forward the fetched
instruction to decode module 32 for further processing. In
response to receiving the instruction, decode module 32 may
check active flags 304 and update the active and inactive
status of processing elements 14 based the current state of
active flags 304, which may have been modified by the
resume check operation. If the instruction is of a type that is
issuable to processing elements 14, decode module 32 may
issue the instruction to processing elements 14 in conjunction
with or after updating the active and inactive status of pro-
cessing elements 14. Although the example control flow mod-
ule 34 illustrates resume check module 310 as signaling fetch
module 30 upon completion of the resume check operation, in
other examples, resume check module 158 may send the
signal indicating that the resume check has completed to
decode module 32. In such examples, when decode module
32 receives the signal, decode module 32 may check active
flags 304 and update the active and inactive status of process-
ing elements 14 based the current state of active flags 304.

When decode module 32 decodes instruction, if decode
module 32 determines that the instruction is a branch instruc-
tion (i.e., a conditional branch instruction), then decode mod-
ule 32 may send a signal to branch condition evaluator 312
indicating that the current instruction is a conditional branch
instruction and provide information indicative of the branch
condition to branch condition evaluator 312 for further pro-
cessing. In some examples, if decode module 32 determines
that the instruction is not a branch instruction (e.g., a jump
instruction, a subroutine instruction, or a sequential instruc-
tion), then decode module 32 may send a signal to branch
condition evaluator 160 indicating that the current instruction
is not a conditional branch instruction.

Decode module 32 provides control information to event
information generator 162 for further processing. In some
examples, the control information may be the instruction
itself. In further examples, the control information may
include information, such as, e.g., information indicative of
whether the instruction is a control flow instruction or a
sequential instruction; if the instruction is a control flow
instruction, information indicative of whether the instruction
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is a branch instruction, a jump instruction, a call instruction,
or a return instruction; and if the instruction is a branch or
jump instruction, information indicative of whether the
branch or jump instruction is a forward or backward branch or
jump instruction; and if the instruction is a branch instruction,
information specifying the branch condition.

If the currently processed instruction is a conditional
branch instruction, branch condition evaluator 312 may
evaluate the branch condition for each active thread. In some
examples, branch condition evaluator 312 may receive the
result of a comparison operation or a zero check operation
from processing elements 14 via communication path 22. In
further examples, branch condition evaluator 312 may access
one or more registers in data store 18, via communication
path 24, and perform a comparison operation or a zero check
operation. In any case, branch condition evaluator 312 may
determine whether the branch condition is satisfied or not
satisfied for each active thread. In some examples, branch
condition evaluator 312 may forward information indicative
of whether the branch condition is satisfied or not satisfied for
each active thread to event information generator 314. In
additional examples, branch condition evaluator 312 may
determine whether the branching divergence for the current
instruction is uniform or divergent and forward information
indicative of whether the branching divergence is uniform or
divergent to event information generator 314. In further
examples, if the branching divergence is uniform for the
branch instruction, branch condition evaluator 312 may deter-
mine whether the branch condition is uniformly satisfied or
uniformly not satisfied, and forward information indicative of
whether the branch condition is uniformly satisfied or uni-
formly not satisfied to event information generator 314.

Event information generator 314 receives control informa-
tion from decode module 32 and, if the currently processed
instruction is a branch instruction, receives branch condition
information from branch condition evaluator 312. In some
examples, event information generator 314 may also receive
branching divergence information from branch condition
evaluator 312 if the currently processed instruction is a
branch instruction. If event information generator 314 does
not receive branching divergence information from branch
condition evaluator 312, then event information generator
314 may determine whether the branching divergence for the
current instruction is uniform or divergent. Event information
generator 314 may also determine whether the target program
counter value for the currently processed instruction is less
than or equal to the MINRC 308. Event information generator
314 generates events based on the received information, and
provides the events to state transition block 318, thread deac-
tivator 320, subroutine handler 322 and next instruction block
328.

In some examples, event information generator 314 may
generate the following events:

Jb: Jump backward instruction

JfL: Jump forward instruction, target is less than orequal to

MINRC
JfG: Jump forward instruction, target is greater than
MINRC

BbuT: Branch backward instruction, all threads are uni-

form, condition is true

BbuF: Branch backward instruction, all threads are uni-

form, condition is false

BfuTL: Branch forward instruction, all threads are uni-

form, condition is true, Target is less than or equal to
MINRC

BfuTG: Branch forward instruction, all threads are uni-

form, condition is true, Target is greater than MINRC
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BfuF: Branch forward instruction, all threads are uniform,

condition is false

Bbd: Branch backward instruction, threads are divergent

Bfd: Branch forward instruction, threads are divergent

S: Sequential instruction

Call: Jump to subroutine entry location

Ret: Jump to the next instruction immediately after call in

the caller

According to the above-identified events, an instruction may
be a sequential instruction (S), a jump instruction (J), a branch
instruction (B), a call instruction (Call), or a return instruction
(Ret). For jump or branch instructions, the jump or branch
direction may be either backward (b) or forward (f). For
branch instructions, the branching divergence may be either
uniform (u) or divergent (d). For branch instructions, the
branching condition may be either true (T) or false (F). A true
branch condition may correspond to a satisfied branch con-
dition, and a false branch condition may correspond to an
unsatisfied branch condition. The forward jump range may
depend on whether the target is greater than the MINRC.
Thus, a comparison result may be defined to indicate that the
target is less than or equal to the MINRC (L) or that the target
is greater than the MINRC (G).

Program state register 316 may store a program state for the
program executing in processing system 10. In some
examples, program state register 316 may store the following
three states:

State 0: All threads are active.

State 1: At least one thread is active and at least one thread

is inactive.

State 2: All threads are inactive.

In some examples, processing system 10 may be configured
such that the initial state and final state of a program are each
state 0.

State transition block 318 may receive an event from event
information generator 314 and a current program state from
program state register 316, generate a new program state
based on the received events and the current program state,
and store the new program state in program state register 316.
State transition block 318 may generate the new program
state in accordance with the state transition diagram
described in further detail with respect to FIG. 20 and/or in
accordance with the state transition table described in further
detail with respect to FIG. 21.

Thread deactivator 320 may receive an event from event
information generator 314 and a current program state from
program state register 316, determine whether to deactivate
one or more threads based on the event and the current pro-
gram state, and deactivate one or more threads in response to
certain combinations of events and current program states.
When deactivating threads, thread deactivator 320 may
update active flags 304 and resume counters 306 for the
threads being deactivated. Thread deactivator 320 may deac-
tivate threads in accordance with the state transition table
described in further detail with respect to FIG. 21.

Subroutine handler 322 may receive an event from event
information generator 314, and manage call stack 324,
MINRC stack 326 and MINRC 308 based on the received
event. For example, in response to receiving a Call event,
subroutine handler 322 may push the MINRC value currently
stored in MINRC 308 onto MINRC stack 326, and initialize
MINRC 308 to a default value. Initializing MINRC 308 to the
default value may include overwriting the MINRC value cor-
responding to the caller program that was previously stored in
MINRC 308. Also in response to receiving a Call event,
subroutine handler 322 may push a return address onto call
stack 324. The return address may correspond to a next
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sequential instruction in the caller program that occurs imme-
diately after the call instruction currently being processed.

In response to receiving a Ret event, subroutine handler
322 may pop the most recently stored MINRC value off of
MINRC stack 326 and store the popped MINRC value in
MINRC 308. Storing the popped MINRC value in MINRC
308 may include overwriting the MINRC value correspond-
ing to the callee subroutine program that was previously
stored in MINRC 308. Also in response to receiving a Ret
event, subroutine handler 322 may pop the most recently
stored return address off of call stack 324 and cause program
counter 28 to be loaded with value corresponding to the
popped return address. For example, subroutine handler 322
may pass the popped return address to next instruction block
328, which may select a program counter value correspond-
ing to the popped return address to load into program counter
28 on the next instruction cycle.

Next instruction block 328 may receive an event from event
information generator 314 and a current program state from
program state register 316, determine a new program counter
value to load into program counter 28, and load the new
program counter value into program counter 28. The new
program counter value may be indicative of a next instruction
to be processed by control unit 12. Next instruction block 328
may determine the new program counter value in accordance
with the state transition table described in further detail with
respect to FIG. 21.

As discussed above, resume check module 310 may update
program state register 316 based on the outcome of the
resume check operation. This update may be performed by
resume check module 310 in an asynchronous manner. For
example, if the program state was State 1 prior to performing
the resume check operation, and all inactive threads are reac-
tivated, program state register 316 may change program state
register 316 to State 0 in an asynchronous fashion to reflect
that all threads are activated. It should be noted that state
transition block 318 generates the new program state based on
the current program state that is available after any updating
by resume check module 310. Similarly, thread deactivator
320 determines whether to deactivate one or more threads
based on the current program state that is available after any
updating by resume check module 310, and next instruction
block 328 determines a new program counter value based on
the current program state that is available after any updating
by resume check module 310. As such, although the program
state may change between two different states during a single
processing cycle due to a resume check, the final state for the
processing cycle, i.e., the state that occurs after the resume
check is complete, is used as the current program state for
processing by each of state transition block 318, thread deac-
tivator 320 and next instruction block 328.

In some examples, each of the components in control flow
module 34 may be implemented as one or more hardware
components within a processor. For example, thread registers
302, active flags 304, resume counters 306, MINRC 308,
program state register 316, call stack 324, and/or MINRC
stack 326 may each be implemented as one or more hardware
registers. As another example, resume check module 310,
branch condition evaluator 312, event information generator
314, state transition block 318, thread deactivator 320, sub-
routine handler 322 and/or next instruction block 328 may be
implemented as combinational logic hardware and/or as a
combination of combinational logic hardware and hardware
registers.

FIG. 20 is a state transition diagram that characterizes
exemplary operation of control flow module 34 illustrated in
FIG. 19 according to this disclosure. The arrows shown in
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FIG. 20 represent transitions between the different states
identified by the circles. The arrows are associated with one or
both of events generated by event information generator 314
and a resume event. A resume event may be an asynchronous
state transition that occurs as the result of a resume check
operation where one or more threads are reactivated. The state
transitions associated with the remaining events generated by
event information generator 314 may be synchronous state
transitions. A synchronous state transition may occur
between processing cycles, and an asynchronous state tran-
sition may occur during the processing cycle. If an asynchro-
nous state transition occurs during a processing cycle due to
the resume check, then the state that occurs after the asyn-
chronous transition is used to determine the next state for the
next processing cycle.

FIG. 21 is a state transition table that characterizes exem-
plary operation of the control flow module 34 illustrated in
FIG. 19 according to this disclosure. The state transition table
in FIG. 21 includes an “OLD STATE” column, which repre-
sents the current program state, and a “NEW STATE” col-
umn, which represents either a new program state for a next
processing cycle or a program state that occurs after an asyn-
chronous transition due to a resume check operation. The
state transition table also includes an “EVENT” column,
which includes the events generated by event information
generator 314. The indicator “n/a” in the “EVENT” column
signifies that the state transition and action occurs due to a
resume check operation and that the event is irrelevant for
such a transition. The state transition table also includes an
“ACTION” column that indicates what action takes place in
response to a particular combination of a current program
state and an event. The action labeled “Resume” in the
“ACTION” column signifies that an asynchronous state tran-
sition occurs due to a resume check operation.

As shown in FIGS. 20 and 21, state transition block 318
selects State 0 as the new state to load into program state
register 316 in response to the current state being State 0 and
receiving an S event, a Jb event, a BfuF event, a BbuT event,
aBbuF event, a JfLL event, a BfuTL event, a Call event, ora Ret
event. State transition block 318 selects State 1 as the new
state to load into program state register 316 in response to the
current state being State 0 and receiving a Bbd event or a Bfd
event. State transition block 318 also selects State 1 as the new
state to load into program state register 316 in response to the
current state being State 1 and receiving an S event, a Jb event,
a BbuF event, a BbuT event, a BfuF event, a Bbd event, a Bfd
event, a JIfLL event, a BfuTL event, a Call event, or a Ret event.
State transition block 318 selects State 2 as the new state to
load into program state register 316 in response to the current
state being State 1 and receiving a JfG event ora BfuTG event.
State transition block 318 also selects State 2 as the new state
to load into program state register 316 in response to the
current state being State 2 and receiving any event. In
response to reactivating one or more threads as part of a
resume check operation, state transition block 318 may tran-
sition into State O or State 1 in an asynchronous manner.

As shown in FIG. 24, thread deactivator 320 may deter-
mine to deactivate one or more threads in response to the
current state being either State 0 or State 1 and receiving a
Bbd event or a Bfd event. The Bbd event and Bfd events may
be referred to as divergence events resulting from the evalu-
ation of a branch condition for a branch instruction. Thread
deactivator 320 may determine to deactivate all active threads
that do not satisfy the branch condition (i.e., false condition)
in response to receiving a Bbd event, and to deactivate all
active threads that satisty the branch condition (i.e., true
condition) in response to receiving a Bfd event. Thread deac-
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tivator 320 may utilize the technique illustrated in FIG. 14 to
deactivate all active threads that do not satisfy the branch
condition, and the technique illustrated in FIG. 15 to deacti-
vate all active threads that satisfy the branch condition.
Thread deactivator 320 may determine to deactivate all active
threads in response to the current state being State 1 and
receiving a JfG event or a BfuTG event. Thread deactivator
320 may utilize the technique illustrated in FIG. 11 to deac-
tivate all active threads.

As shown in FIG. 24, next instruction block 328 may select
one of the following program counter values to load into
program counter 28 in response to various combinations of
current program state and events: (1) a program counter value
indicative of the next sequential instruction (i.e., “PC+17); (2)
aprogram counter value indicative of a target instruction (i.e.,
a target program counter value); (3) a minimum resume
counter value (MINRC), or a program counter value indica-
tive of a return address. For example, next instruction block
328 may select a program counter value indicative of the next
sequential instruction (i.e., “PC+1”) to load into program
counter 28 in response to the current state being State 0 and
receiving an S event, a BfuF event, a BbuF event, or a Bfd
event. Next instruction block 328 may also select a program
counter value indicative of the next sequential instruction to
load into program counter 28 in response to the current state
being State 1 and receiving an S event, a BbuF event, a BfuF
event, or a Bfd event. Next instruction block 328 may also
select a program counter value indicative of the next sequen-
tial instruction to load into program counter 28 in response to
the current state being State 2 and receiving any event other
than a JIL event or a JfG event.

Next instruction block 328 may select a program counter
value indicative of a target instruction (i.e., a target program
counter value) to load into program counter 28 in response to
the current state being State 0 and receiving a Jb event, a BbuT
event, a JfLL event, a BfuTL event, a Bbd event, ora Call event.
In the case where the event is a Call event, the target instruc-
tion may correspond to the subroutine entry point. Next
instruction block 328 may also select a program counter value
indicative of a target instruction to load into program counter
28 in response to the current state being State 1 and receiving
a Jb event, a BbuT event, a Bbd event, a JfLL event, a BfuTL
event, or a Call event. Next instruction block 328 may also
select a program counter value indicative of a target instruc-
tion to load into program counter 28 in response to the current
state being State 2 and receiving a JfL. event.

Next instruction block 328 may select the MINRC value to
load into program counter 28 in response to the current state
being State 1 and receiving a JfG event or a BfuTG event.
Next instruction block 328 may also select the MINRC value
to load into program counter 28 in response to the current
state being State 2 and receiving a JfG event.

Next instruction block 328 may select a program counter
value indicative of a return address to load into program
counter 28 in response to the current state being State 0 and
receiving a Ret event. Next instruction block 328 may also
select a program counter value indicative of a return address
to load into program counter 28 in response to the current
state being State 1 and receiving a Ret event.

FIGS. 22-28 illustrate example pseudo-code for imple-
menting the subroutine execution techniques of this disclo-
sure. In particular, FIG. 22 illustrates example pseudo-code
for implementing a resume check operation according to this
disclosure. In some examples, the pseudo-code illustrated in
FIG. 22 may correspond to the flow diagram illustrated in
FIG. 16. FIG. 23 illustrates example pseudo-code for imple-
menting jump instruction processing according to this disclo-
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sure. In some examples, the pseudo-code illustrated in FIG.
23 may correspond to the flow diagrams illustrated in FIGS.
10 and 11. FIG. 24 illustrates example pseudo-code for imple-
menting branch instruction processing according to this dis-
closure. In some examples, the pseudo-code illustrated in
FIG. 24 may correspond to the flow diagrams illustrated in
FIGS. 11-15.

FIG. 25 illustrates example pseudo-code for implementing
call instruction processing according to this disclosure. In
some examples, the pseudo-code illustrated in FIG. 25 may
correspond to the flow diagram illustrated in FIG. 8. As shown
in FIG. 25, control flow unit 34 may push a value stored in
MINRC register 42 for a caller program onto a MINRC stack
in stack storage structure 52 to save the state of the MINRC
corresponding to the caller program. In addition, control flow
unit 34 may overwrite the value stored in MINRC register 42
with a default value (i.e., “MAX”). The default value may be
used to initialize the MINRC for the callee program. Because
the MINRC of the callee program corresponds to the smallest
resume counter for all threads that are active when execution
of the subroutine is initiated, all resume counters used to
calculate the MINRC for the callee program are associated
with active threads when the MINRC of the callee program is
initialized. As discussed above, when a thread is active, the
resume counter may be equal to an “infinite value” (e.g., a
maximum register value), which in this case is denoted by
“MAX.” Therefore, when initialized, the MINRC for the
callee program is equal to “MAX,” which is the value of all
resume counters associated with active threads when the
callee program begins execution. As execution of the callee
program progresses, one or more threads may be deactivated,
which would then cause the MINRC to be updated to other
values.

The call instruction may include a target value indicative of
a target program instruction that corresponds to the first
instruction of the callee subroutine. When executing the call
instruction, control flow unit 34 may load program counter 28
with a value corresponding to the target instruction of the
callee subroutine. Also when executing the call instruction,
control flow unit 34 may push a return address, which corre-
sponds to the next sequential instruction after the call instruc-
tion in the caller program, onto a call stack in stack storage
structure 52.

The call stack specified in the pseudo-code may initially be
empty at the entry point to the main program. In addition to
pushing the return address onto the call stack, other state
variables might also be pushed onto the call stack upon execu-
tion of a call instruction and popped off of the call stack after
execution of a return instruction.

FIG. 26 illustrates example pseudo-code for implementing
return instruction processing according to this disclosure. In
some examples, the pseudo-code illustrated in FIG. 26 may
correspond to the flow diagram illustrated in FIG. 9. As shown
in FIG. 26, control flow unit 34 may pop the most recently
saved MINRC value off of the MINRC stack in stack storage
structure 52. The most recently saved MINRC value may
correspond to a saved state of the MINRC corresponding to
the caller program. Control flow unit 34 may overwrite a
value stored in MINRC register 42 with the popped MINRC
value. In addition, control flow unit 34 may pop the most
recently saved return address from the call stack in stack
storage structure 52, and load a value corresponding to the
popped return address into program counter 28.

After executing the return instruction, MINRC register 42
is restored to the state it was in prior to executing the subrou-
tine call instruction. By pushing and popping MINRC values
onto and off of a stack as described above, the techniques of
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this disclosure may be able to implement subroutine-specific
MINRC:s while, in some examples, maintaining just a single
MINRC register 42.

The example pseudo-code reproduced above saves the
state of the return address and the state of the MINRC to two
different stacks. That is, the return address is pushed onto a
call stack and the MINRC is pushed onto a MINRC stack. In
other examples, however, the return address and MINRC may
be pushed onto the same stack as part of a single stack frame.

FIG. 27 illustrates example pseudo-code for performing an
update MINRC operation according to this disclosure. In
some examples, the pseudo-code illustrated in FIG. 27 may
correspond to the flow diagram illustrated in FIG. 17. As
shown in FIG. 27, control flow unit 34 cycles through all of
the resume counters associated with all inactive threads
executing in processing system 10. For each inactive thread,
control flow unit 34 may set the MINRC equal to the resume
counter value corresponding to the respective inactive thread
if both of the following conditions are satisfied: (1) the
resume counter value for the inactive thread is less than the
current MINRC value; and (2) the resume counter value for
the inactive thread is greater than or equal to the entry point of
the subroutine (i.e., a program counter value corresponding to
the starting address of the subroutine). By conditioning the
update of the MINRC on whether the resume counter value
for aninactive thread is greater than or equal to the entry point
of the subroutine, the update MINRC operation shown in
FIG. 27 may prevent one or more resume counters that are
associated with threads that were inactive prior to initiating
execution of the subroutine from affecting the resulting
MINRC value. In this way, control flow unit 34 may ensure
that the updated MINRC value for a subroutine-specific
MINRC is within the program space allocated for the subrou-
tine.

FIG. 28 illustrates example pseudo-code for performing an
update MINRC operation according to this disclosure. In
some examples, the pseudo-code illustrated in FIG. 27 may
correspond to the flow diagram illustrated in FIG. 18. As
shown in FIG. 28, control flow unit 34 cycles through all of
the resume counters associated with all inactive threads
executing in processing system 10. For each inactive thread,
control flow unit 34 may set the MINRC equal to the resume
counter value corresponding to the respective inactive thread
if both of the following conditions are satisfied: (1) the
resume counter value for the inactive thread is less than the
current MINRC value; and (2) a flag associated with the
respective inactive thread indicates that the thread was active
when execution of the subroutine program was initiated.
Thus, the update MINRC operation described above effec-
tively excludes those resume counters that are associated with
threads that were inactive when execution of the subroutine
program was initiated. In this way, control flow unit 34 may
ensure that the updated MINRC value for a subroutine-spe-
cific MINRC is within the program space allocated for the
subroutine.

FIG. 29 is a flow diagram illustrating an example technique
for controlling a processing system based on program mod-
ule-specific MINRCs in accordance with this disclosure.
Control unit 12 controls execution of a program based on a
first MINRC (330). The first MINRC specifies a value that is
indicative of a smallest resume counter value of a plurality of
resume counter values associated with a plurality of threads.
Control unit 12 controls execution of a subroutine of the
program based on a second MINRC associated with the sub-
routine (332). The second MINRC specifies a value indicative
of a smallest resume counter value from a subset of the
plurality of resume counter values that corresponds to all of
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the threads that are active when execution of the subroutine is
initiated. In some examples, controlling execution of a pro-
gram module (e.g., a main program or a subroutine) based on
a MINRC may include selecting a next instruction to execute
in response to a forward jump instruction or a forward branch
instruction where the branching condition is satisfied for all
active threads based on the MINRC.

In some examples, each of the resume counter values may
be indicative of a program counter value at which a respective
one of the threads that corresponds to the respective resume
counter value is scheduled to be activated if the respective one
of the threads is inactive. In further examples, each of the
resume counter values is equal to a default value if the respec-
tive one of the threads that corresponds to the respective
resume counter value is active.

FIG. 30 is a flow diagram illustrating an example technique
for executing a subroutine call instruction in accordance with
this disclosure. Control unit 12 executes a call instruction
(334). In response to executing the call instruction, control
unit 12 saves a state of a first MINRC corresponding to the
caller program (336). For example, control unit 12 may push
a value stored in MINRC register 42 onto a stack storage
structure 52. In response to executing the call instruction,
control unit 12 causes execution of the callee subroutine
program to be controlled based on a second MINRC corre-
sponding to the callee subroutine program (338). That is,
control unit 12 may cause the second MINRC to be used to
control execution of the subroutine program (e.g., to control
the selection of a next instruction in response to a forward
jump instruction or a forward branch instruction where the
branching condition s satisfied for all active threads). In some
examples, in order to cause the second MINRC to be used to
control execution of the subroutine program, control unit 12
may initialize MINRC register 42 such that MINRC register
42 stores an initial MINRC value for the second MINRC
corresponding to the callee program. Initializing the MINRC
register 42, in some examples, may include overwriting a
value stored in MINRC register 42 corresponding to the first
MINRC with an initial MINRC value corresponding to the
second MINRC. The initial MINRC value stored in MINRC
register 42 may be a default MINRC value (e.g., a maximum
register value or a value that is greater than the program
counter range needed for the program).

FIG. 31 is aflow diagram illustrating an example technique
for executing a subroutine return instruction in accordance
with this disclosure. Control unit 12 executes a return instruc-
tion (340). In response to executing the return instruction,
control unit 12 restores a saved state of a first MINRC corre-
sponding to the caller program of the subroutine that is cur-
rently being executed (342). For example, control unit 12 may
pop a MINRC value stored in stack storage structure 52 that
corresponds to the saved state of the first MINRC. In response
to executing the return instruction, control unit 12 causes
execution of the caller program to be controlled based on the
first MINRC corresponding to the caller program (344). That
is, control unit 12 may cause the first MINRC to be used to
control execution of the caller program (e.g., to control the
selection of a next instruction in response to a forward jump
instruction or a forward branch instruction where the branch-
ing condition is satisfied for all active threads). In some
examples, in order to cause execution of the caller program to
be controlled based on the first MINRC corresponding to the
caller program, control unit 12 may store the popped MINRC
value in MINRC register 42. Storing the popped MINRC
value in MINRC register 42 may, in some examples, include
overwriting a value stored in MINRC register 42 that corre-
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sponds to a MINRC for the subroutine with a value corre-
sponding to the popped MINRC value.

The techniques described in this disclosure may be imple-
mented, at least in part, in hardware, software, firmware or
any combination thereof. For example, various aspects of the
described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays (FP-
GAs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
Theterm “processor” or “processing circuitry” may generally
refer to any of the foregoing logic circuitry, alone or in com-
bination with other logic circuitry, or any other equivalent
circuitry such as discrete hardware that performs processing.

Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as
discrete but interoperable logic devices. Depiction of differ-
ent features as modules or units is intended to highlight dif-
ferent functional aspects and does not necessarily imply that
such modules or units must be realized by separate hardware
or software components. Rather, functionality associated
with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or
integrated within common or separate hardware or software
components.

The techniques described in this disclosure may also be
stored, embodied or encoded in a computer-readable
medium, such as a computer-readable storage medium that
stores instructions. Instructions embedded or encoded in a
computer-readable medium may cause one or more proces-
sors to perform the techniques described herein, e.g., when
the instructions are executed by the one or more processors.
Computer readable storage media may include random
access memory (RAM), read only memory (ROM), program-
mable read only memory (PROM), erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), flash memory, a
hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage
media that is tangible.

Computer-readable media may include computer-readable
storage media, which corresponds to a tangible storage
medium, such as those listed above. Computer-readable
media may also comprise communication media including
any medium that facilitates transfer of a computer program
from one place to another, e.g., according to a communication
protocol. In this manner, the phrase “computer-readable
media” generally may correspond to (1) tangible computer-
readable storage media which is non-transitory, and (2) a
non-tangible computer-readable communication medium
such as a transitory signal or carrier wave.

Various aspects and examples have been described. How-
ever, modifications can be made to the structure or techniques
of this disclosure without departing from the scope of the
following claims.

What is claimed is:

1. A method comprising:

controlling, with one or more processors, execution of a

program based on a first minimum resume counter
(MINRC), the first MINRC specifying a value that is
indicative of a smallest resume counter value of a plu-
rality of resume counter values associated with a plural-
ity of threads of execution for the program; and
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controlling, with the one or more processors, execution of
a subroutine of the program based on a second MINRC
associated with the subroutine, the second MINRC
specifying a value indicative of a smallest resume
counter value from a subset of the plurality of resume
counter values that corresponds to all of the threads that
are active when execution of the subroutine is initiated.
2. The method of claim 1, further comprising:
saving a state of the first MINRC in response to executing
a subroutine call instruction; and

causing execution of the subroutine to be controlled based
on the second MINRC in response to executing the
subroutine call instruction.
3. The method of claim 2,
wherein saving the state of the first MINRC comprises
pushing a value stored in a MINRC register for the first
MINRC onto a stack storage structure, and

wherein causing execution of the subroutine to be con-
trolled based on the second MINRC comprises overwrit-
ing the value stored in the MINRC register with an initial
value for the second MINRC.

4. The method of claim 2, further comprising:

causing execution of the program to be controlled based on

the saved state of the first MINRC in response to execut-
ing a subroutine return instruction.

5. The method of claim 4, wherein causing execution of the
program to be controlled based on the saved state of the first
MINRC comprises:

popping the saved state of the first MINRC from a stack

storage structure; and

overwriting a value stored in the MINRC register with a

value corresponding to the saved state of the first
MINRC.

6. The method of claim 1, wherein each of the resume
counter values is indicative of a program counter value at
which a respective one of the threads that corresponds to the
respective resume counter value is scheduled to be activated if
the respective one of the threads is inactive.

7. The method of claim 6, wherein each of the resume
counter values is equal to a default value if the respective one
of the threads that corresponds to the respective resume
counter value is active.

8. The method of claim 1, further comprising:

setting the second MINRC to a value indicative of the

smallest resume counter value from the subset of the
plurality of resume counter values.

9. The method of claim 8, wherein setting the second
MINRC comprises:

for each inactive thread, setting the second MINRC equal

to a resume counter value for the respective inactive
thread if the resume counter value for the respective
inactive thread is less than the second MINRC and the
resume counter value for the respective inactive thread is
greater than or equal to a value indicative of a first
instruction of the subroutine.

10. The method of claim 8, wherein setting the second
MINRC comprises:

for each inactive thread, setting the second MINRC equal

to a resume counter value for the respective inactive
thread if the resume counter value for the respective
inactive thread is less than the second MINRC value and
aflag associated with the respective inactive thread indi-
cates that the inactive thread was active when execution
of the subroutine was initiated.

11. The method of claim 10, further comprising:

for each of the threads, in response to initiating execution

of the subroutine, setting a flag corresponding to the
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respective thread to active status if the thread is active
when execution of the subroutine was initiated; and

for each of the threads, in response to initiating execution

of the subroutine, setting the flag corresponding to the
respective thread to an inactive status if the thread is not
active when execution of the subroutine was initiated.

12. A device comprising:

one or more processors configured to control execution of

a program based on a first minimum resume counter
(MINRC) and control execution of a subroutine of the
program based on a second MINRC associated with the
subroutine, the first MINRC specifying a value that is
indicative of a smallest resume counter value of a plu-
rality of resume counter values associated with a plural-
ity of threads of execution for the program, the second
MINRC specifying a value indicative of a smallest
resume counter value from a subset of the plurality of
resume counter values that corresponds to all of the
threads that are active when execution of the subroutine
is initiated.

13. The device of claim 12, wherein the one or more pro-
cessors is further configured to save a state of the first MINRC
in response to executing a subroutine call instruction, and
cause execution of the subroutine to be controlled based on
the second MINRC in response to executing the subroutine
call instruction.

14. The device of claim 13, wherein the one or more pro-
cessors is further configured to push a value stored in a
MINRC register for the first MINRC onto a stack storage
structure, and overwrite the value stored in the MINRC reg-
ister with an initial value for the second MINRC.

15. The device of claim 13, wherein the one or more pro-
cessors is further configured to cause execution of the pro-
gram to be controlled based on the saved state of the first
MINRC in response to executing a subroutine return instruc-
tion.

16. The device of claim 15, wherein the one or more pro-
cessors is further configured to pop the saved state of the first
MINRC from a stack storage structure and overwrite a value
stored in the MINRC register with a value corresponding to
the saved state of the first MINRC.

17. The device of claim 12, wherein each of the resume
counter values is indicative of a program counter value at
which a respective one of the threads that corresponds to the
respective resume counter value is scheduled to be activated if
the respective one of the threads is inactive.

18. The device of claim 17, wherein each of the resume
counter values is equal to a default value if the respective one
of the threads that corresponds to the respective resume
counter value is active.

19. The device of claim 12, wherein the one or more pro-
cessors is further configured to set the second MINRC to a
value indicative of the smallest resume counter value from the
subset of the plurality of resume counter values.

20. The device of claim 19, wherein the one or more pro-
cessors is further configured to, for each inactive thread, set
the second MINRC equal to a resume counter value for the
respective inactive thread if the resume counter value for the
respective inactive thread is less than the second MINRC and
the resume counter value for the respective inactive thread is
greater than or equal to a value indicative of a first instruction
of the subroutine.

21. The device of claim 19, wherein the one or more pro-
cessors is further configured to, for each inactive thread, set
the second MINRC equal to a resume counter value for the
respective inactive thread if the resume counter value for the
respective inactive thread is less than the second MINRC
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value and a flag associated with the respective inactive thread
indicates that the inactive thread was active when execution of
the subroutine was initiated.

22. The device of claim 21, wherein the one or more pro-
cessors is further configured to, for each of the threads, set a
flag corresponding to the respective thread to active status in
response to initiating execution of the subroutine if the thread
is active when execution of the subroutine was initiated, and
for each of the threads, set the flag corresponding to the
respective thread to an inactive status in response to initiating
execution of the subroutine if the thread is not active when
execution of the subroutine was initiated.

23. The device of claim 12, wherein the device comprises
a wireless communication device.

24. The device of claim 12, wherein the device comprises
a mobile phone handset.

25. An apparatus comprising:

means for controlling execution of a program based on a

first minimum resume counter (MINRC), the first
MINRC specitying a value that is indicative of a smallest
resume counter value of a plurality of resume counter
values associated with a plurality of threads of execution
for the program; and

means for controlling execution of a subroutine of the

program based on a second MINRC associated with the
subroutine, the second MINRC specifying a value
indicative of a smallest resume counter value from a
subset of the plurality of resume counter values that
corresponds to all of the threads that are active when
execution of the subroutine is initiated.

26. The apparatus of claim 25, further comprising:

means for saving a state of the first MINRC in response to

executing a subroutine call instruction; and

means for causing execution of the subroutine to be con-

trolled based on the second MINRC in response to
executing the subroutine call instruction.

27. The apparatus of claim 26,

wherein the means for saving the state of the first MINRC

comprises means for pushing a value stored ina MINRC
register for the first MINRC onto a stack storage struc-
ture, and

wherein the means for causing execution of the subroutine

to be controlled based on the second MINRC in response
to executing the subroutine call instruction comprises
means for overwriting the value stored in the MINRC
register with an initial value for the second MINRC.

28. The apparatus of claim 26, further comprising:

means for causing execution of the program to be con-

trolled based on the saved state of the first MINRC in
response to executing a subroutine return instruction.
29. The apparatus of claim 28, wherein the means for
causing execution of the program to be controlled based on
the saved state of the first MINRC in response to executing a
subroutine return instruction comprises:
means for popping the saved state of the first MINRC from
a stack storage structure; and

means for overwriting a value stored in the MINRC register
with a value corresponding to the saved state of the first
MINRC.

30. The apparatus of claim 25, wherein each of the resume
counter values is indicative of a program counter value at
which a respective one of the threads that corresponds to the
respective resume counter value is scheduled to be activated if
the respective one of the threads is inactive.
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31. The apparatus of claim 30, wherein each of the resume
counter values is equal to a default value if the respective one
of the threads that corresponds to the respective resume
counter value is active.

32. The apparatus of claim 25, further comprising:

means for setting the second MINRC to a value indicative

of'a smallest resume counter value from the subset of the
plurality of resume counter values.

33. A non-transitory computer-readable storage medium
storing instructions that, when executed, cause one or more
processors to:

control execution of a program based on a first minimum

resume counter (MINRC), the first MINRC specifying a
value that is indicative of a smallest resume counter
value of a plurality of resume counter values associated
with a plurality of threads of execution for the program;
and

control execution of a subroutine of the program based on

a second MINRC associated with the subroutine, the
second MINRC specifying a value indicative of a small-
est resume counter value from a subset of the plurality of
resume counter values that corresponds to all of the
threads that are active when execution of the subroutine
is initiated.

34. The non-transitory computer-readable storage medium
of claim 33, further comprising instructions that, when
executed, cause one or more processors to:

save a state of the first MINRC in response to executing a

subroutine call instruction; and

cause execution of the subroutine to be controlled based on

the second MINRC in response to executing the subrou-
tine call instruction.

35. The non-transitory computer-readable storage medium
of claim 34,

wherein the instructions that cause the one or more proces-

sors to save the state of the first MINRC comprise
instructions that cause the one or more processors to
push a value stored in a MINRC register for the first
MINRC onto a stack storage structure, and
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wherein the instructions that cause the one or more proces-
sors to cause execution of the subroutine to be controlled
based on the second MINRC in response to executing
the subroutine call instruction comprise instructions that
cause the one or more processors to overwrite the value
stored in the MINRC register with an initial value for the
second MINRC.

36. The non-transitory computer-readable storage medium
of claim 34, further comprising instructions that, when
executed, cause one or more processors to:

cause execution of the program to be controlled based on

the saved state of the first MINRC in response to execut-
ing a subroutine return instruction.

37. The non-transitory computer-readable storage medium
of claim 36, wherein the instructions that cause the one or
more processors to cause execution of the program to be
controlled based on the saved state of the first MINRC in
response to executing a subroutine return instruction com-
prise instructions that cause the one or more processors to:

pop the saved state of the first MINRC from a stack storage

structure; and

overwrite a value stored in the MINRC register with a value

corresponding to the saved state of the first MINRC.

38. The non-transitory computer-readable storage medium
of claim 33, wherein each of the resume counter values is
indicative of a program counter value at which a respective
one of the threads that corresponds to the respective resume
counter value is scheduled to be activated if the respective one
of the threads is inactive.

39. The non-transitory computer-readable storage medium
of claim 38, wherein each of the resume counter values is
equal to a default value if the respective one of the threads that
corresponds to the respective resume counter value is active.

40. The non-transitory computer-readable storage medium
of claim 33, further comprising instructions that, when
executed, cause one or more processors to:

set the second MINRC to a value indicative of a smallest

resume counter value from the subset of the plurality of
resume counter values.
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